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Outline

Muon decay

New era of experiments with muons
Muon-electron conversion: the rarest decay
Muon decay in orbit: background for conversion
- approaches to radiative corrections

g-factor of a muon and of a bound electron

- binding effects at a new level



Free muon decay

U 14 A model process in particle physics
(tools for quark decays:
charm in b-decays, Nir 1989)

The first decay process known with one-
and two-loop QED effects.

Also very thoroughly studied experimentally; most recently
* decay distributions ("Michel parameters”) TWIST
* total rate (1 ppm!) MuLan



Fermi constant and tests of the SM

Aopag — cmf +cInMy +...

One of the pillars of electroweak precision tests.



Determination of the Fermi constant (convention)

QED

Finite m_and QED corrections
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Radiative effects in Fermi EFT
1956 one-photon, with finite m_
1999 two-photon, with m =0

2007 two-photon, spectrum of E,

2008 two-photon, with finite m,



Can one go further: to three loops?

We have found an interesting way while checking the two-loop result:
the calculation would be easier if the electron was very heavy, almost
as heavy as the decaying muon.
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Note: the plot actually for QCD.
QED given by a subset of QCD results.



Lepton Flavor Violation



New era of experiments with muons

PSI (Switzerland): Fermilab (USA): J-PARC (Japan):
muonic atoms g-2 g-2
mu -> e + gamma MuZ2e DeeMe
mu + p scattering COMET
mu -> eee muonium HFS

Muons are indeed a great tool for New Physics searches:
long-lived, just massive enough, easy to produce, with convenient spin properties.

They are also mysterious. Some precise measurements
disagree with expectations:
g-2, proton radius, B-decays.
BO — K*O}L+p_
Ry = BR(BT - KTutp™)/ BR(BT — KTete™)



Muon-electron conversion:
probes various types of interactions

Non-dipole interactions are not (directly) probed by
processes with external photons,

by gauge invariance requirements. u

New process: muon-electron conversion

Al

(as well as mu --> eee)

Variety of mechanisms:




from Hiroaki Natori JPS Conf. Proc. 8, 025017 (2015)

Muon-electron conversion plans
(The Nex’r Big Thing in muon physics)
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from Hiroaki Natori JPS Conf. Proc. 8, 025017 (2015)

Muon-electron conversion plans

(The Next Big Thing in muon physics)
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For comparison,

BR (p — ev) < 4e-13




Comparison with scattering experiments

Highest luminosity in fixed-target experiments

~ 1037...38/ (Cm2 _ S)

In a single muonic atom
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Comparison with scattering experiments

Highest luminosity in fixed-target experiments

~ 1037...38/ (Cm2 _ S)

In a single muonic atom

U
—o-
/ flux = density x velocity
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\ / = 9 (0)]* x Za = —~ ~ Z* % 4-10%/ (cm? - 5)
N m

Many atoms are studied in parallel: ~10 muons stopped per second:;
each lives about 10 seconds: 10° atoms present:

~10%/ (cm?® - )




What does the conversion rate mean?

Three fates of a bound muon:
- decay in orbit (dominates for Z < 11)
- nuclear capture (most likely for Z > 11)

- muon-electron conversion (less that 4.3e-12 cases)
I'(p Ti — e Ti)/T(p~Ti — all) < 4.3 x 10712

On the other hand, for free muons: T'(u — ey)/T(p —all) < 4.2 x 1071

Which of these bounds is “"better”?



Two types of operators contribute to LFV

connects opposite chiralities
Of = emy, (€a"* Ppp) Fou - of e, mu

V LL
Ofs" = (ev" Prp) (fyuPLS) :> equal chiralities
OV LE = (ev*Prp) (fy.Prf)

Prir = (IF~%) /2

Only the chirality-flipping operators O° and OP, contribute to p© — ey

All operators contribute to the muon-electron conversion
(because there are no external photons -> no gauge constraints).

Take-home message #1: conversion probes a broader range of physics.




Examples of New Physics scenarios

Dipole operators: closed SUSY loops (like g-2):
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Kuno, Okada
RMP 73, 151

Scalar four-fermion operator, in case of a flavor-offdiagonal Higgs coupling

> >

1 e

*
|
' H
|
N)_ .

=

Contributes mainly to the conversion



How fast is the conversion induced by dipoles?

= e (fu+ fevs) - QAL

mS m3f2
C(u—en) = o (Iful* +1fsl*) = ==

(p—vey) [ muf® 1920, of f )
B = a - =24
Bp = e) I'(n — all) 8t GZmSd :

Y

The same operator induces conversion, competing with capture:
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Take-home message #2: in case of dipole operators,

BR(p — e7)
200(Ti) — 400 (Al, Pb)

BR(conversion) ~

Czarnecki, Marciano, Melnikov



Background for the conversion search

Normal decay of the muon bound in the atom
can produce high-energy electron,

Spectrum has to be well understood.



Electron spectrum in a bound muon decay
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Muon decay-in-orbit spectrum:
the shape-function region

Experiment: TWIST



Two effects: muon motion & Coulomb attraction

: Typical velocity ~ Zq




Two effects: muon motion & Coulomb attraction

: Typical velocity ~ Zq
But can be larger!
v -




Two effects: muon motion & Coulomb attraction

1%

The boosted daughter electron
€ slowed down by the Coulomb attraction




Two effects: muon motion & Coulomb attraction

Net effect:
- In the decay rate: almost none;

only time dilation 2
T — (1 _ (Z9) ) T

2




Two effects: muon motion & Coulomb attraction

Net effect:
- In the decay rate: almost none;

only time dilation 2
T — (1 = (Z;y) ) T

o

UV <o | (&

- In the electron energy spectrum:
(a) computable shift

(b) smearing -> "shape function”

B 8
3 [1 + z2)°

S (x)

Previously used in heavy mesons, where it cannot be compu’réd
from first principles, but can be experimentally accessed.



Comparison with measurement: TWIST
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The spectrum is modified very significantly: effects ~ 1/Za



Muon decay-in-orbit spectrum:
the high-energy region

Experiments: Mu2e and COMET



events x 1074/ MeV

Spectrum of the bound muon decay

Emax
dl’ 5 5
E~(Za) (E,o. —E) c

60 | |
105 MeV

Main background for the conversion signal

AC, M. Dowling, X. Garcia i Tormo, W. Marciano, R. Szafron
R. Szafron, AC



Radiative corrections to the electron spectrum

. . dI’ : - ra\k
Expansion near the end-point £ == — N" B, Ai(rZa) (_)
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number of electrons in the

end-point bin of 1 (0.1) MeV is reduced by 11% (16%)

Szafron, AC, PLB753, 61 (2016)



Anomalous magnetic moment



The puzzle of the muon magnetic moment

The 3.6 sigma discrepancy,

a“*P — aiM = 287(80) x 10~ 11 PRD 86, 095009 (2012)

\

0.7 ppm

is rather large when compared with other bounds on New Physics.



How can g -2 be checked?
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New experimental concept at J-PARC

Can we use g _-2?



New approach to g -2 at J-PARC

Slower muons 300 MeV (instead of the "magic” 3.1 GeV)

Ultracold muons; no electric focusing!

Smaller ring r = 33 cm (instead of 7 m) r|in meters| & o [inFYTeS]a]

Strong, very precisely controlled magnetic field.

~ 10 times more muons than at Fermilab (compensates shorter lifetime).

Brookhaven Fermilab J-PARC
Muon momentum 3.09 GeV/ic 0.3 GeV/ic
gamma 29.3 3
Storage field B=1 .45& - 2_71'
Focusing field Electric quad None - a
# of detected yu+ 5.0E9 1.8E11 15612
decays
# of detected p- 3 6E9 ) )
decays
Precision (stat) 0.46 ppm 0.1 ppm 0.1 ppm




How to check g -2?

Electron g-2 is likely sensitive to the same New
Physics; but at present it is used to determine
the fine-structure constant.

A new source of alpha is needed.



How to check g -2? DS o S

The second best determination of alpha:
from atomic spectroscopy 2
Roo =

MeCO
2h

Needed precision:
14-107" ™, 5 2R u Mx h

o) : .
c me u Mx
7.10712 / / \ \ B
(but is it 8.10-11 12-107" | 12410
for sure?) Nature 2014 for Rb improvement
Sturm et al (better for He) heeded by
factor ~10

gives h/m
e ATAVAV AV Ty .—"'
a(Rb) = 1/137.035999 049(90)  [66 - 10_11] PRL 106, 080801 (2011)



Fine structure constant from bound-e g-factor

geB
Larmor frequency Wy, =
2M,
5
C +
ZeB
Cyclotron frequency Wcycl = M

M

— g Weycl
© 27 Wi,




Bound-electron g-2: the leading effect

Breit 1928: energy correction due to magnetic field
in the hydrogen ground state.

7

7
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Bound-electron g-2: the leading effect

Breit 1928: energy correction due to magnetic field
in the hydrogen ground state.

7

Y

OFE = e/d3:nf21;* [1 — iy - ?’*75] A% [1 + iy .,;-:,},5} v

g = 2-;(1+2W)~2(1(Z§)‘i>

Important: dependence
on alpha; may be exploited
to determine its value.
(Use ions with various Z)



Bound-electron g-2: theory

2(Z Za)*
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Next goal: a?(Za)’ corrections to g

," \\ 4 \\ s \\
s
i | 5 i N\ / A

More than 300 contributions.

Examples:




A new source of alpha: highly-charged ions

2 (Za)? 5 1
g~2— ( 306) . ;‘* ~ (az)2\/(83*"xp)2 + (8g,)? large Z favorable
e
Hydrogen-like lead Boron-like lead

There is a combination of g-factors in both ions where the sensitivity
to the nuclear structure largely cancels, but the sensitivity to alpha remains.

Shabaev, Glazov, Oreshkina, Volotka, Plunien, Kluge, Quint



New idea: medium-charged ions

o 2(Za)’
g2 3
o
Hydrogen-like ion Lithium-like ion

Combine H-like and Li-like to remove nuclear dependence;
then combine with a different nucleus, to remove free-g dependencel!

Much interesting theoretical work remains to be donel

Yerokhin, Berseneva, Harman, Tupitsyn, Keitel: PRL (2016)



Summary

* New era of muon studies just starting

* Muon-electron conversion will probe very high mass scales
* Binding modifies the muon decay and the electron g-factor
* Theory of both effects: more fun than for free particles

* Synergy with beautiful experiments: lepton-flavor violation,
mass of the electron and, in future, the fine structure constant.

* For g: a(Za)® effects almost finished; a?(Za)® hopefully soon.

* Opportunities for more theoretical improvement...



Lepton flavor violation: y—» ey

New bound (MEG @ Paul Scherrer Institute)
BR (1 — ey) < 4.2-1071  arXivi1605.05081

Detestor

This corresponds to the transition dipole moment

< e Sensitive to
dyse $53.5-107" e-cm  the heqyiest

"new physics”
For comparison: electron EDM de < 0.87-10"*¢-cm

muon g-2 d, <3-107*¢-cm
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