Looking for New Physics with muons

Outline

- Muon decay New era of experiments with muons Muon-electron conversion: the rarest decay Muon decay in orbit: background for conversion - approaches to radiative corrections g-factor of a muon and of a bound electron
- binding effects at a new level

Free muon decay

A model process in particle physics (tools for quark decays: charm in b-decays, Nir 1989)

The first decay process known with oneand two-loop QED effects.

Anastasiou, Melnikov, Petriello, JHEP 0709 (2007) 014 van Ritbergen + Stuart, PRL 82 (1999) 488 Pak + Czarnecki, PRL 100 (2008) 241807

Also very thoroughly studied experimentally; most recently * decay distributions ("Michel parameters") TWIST PRD 85 (2012) 092013 * total rate (1 ppm!) MuLan PRL 106 (2011) 041803

Fermi constant and tests of the SM

One of the pillars of electroweak precision tests.

Determination of the Fermi constant (convention)

Radiative effects in Fermi EFT

1956 one-photon, with finite m_e

Behrends, Finkelstein, Sirlin

1999 two-photon, with m_e=0

Stuart, van Ritbergen

2007 two-photon, spectrum of E

Anastasiou, Melnikov, Petriello

2008 two-photon, with finite m

Pak, AC

Can one go further: to three loops?

We have found an interesting way while checking the two-loop result: the calculation would be easier if the electron was very heavy, almost as heavy as the decaying muon.

Note: the plot actually for QCD. QED given by a subset of QCD results.

Lepton Flavor Violation

New era of experiments with muons

PSI (Switzerland):	Fermilab (USA):	J-PARC (Japan):
muonic atoms	g-2	g-2
mu -> e + gamma	Mu2e	DeeMe
mu + p scattering		COMET
mu -> eee		muonium HFS

Muons are indeed a great tool for New Physics searches: long-lived, just massive enough, easy to produce, with convenient spin properties.

They are also mysterious. Some precise measurements disagree with expectations: g-2, proton radius, B-decays.

$$B^0 \to K^{*0} \mu^+ \mu^-$$

 $R_K = BR(B^+ \to K^+ \mu^+ \mu^-) / BR(B^+ \to K^+ e^+ e^-)$

Muon-electron conversion: probes various types of interactions

Non-dipole interactions are not (directly) probed by processes with external photons, by gauge invariance requirements.

New process: muon-electron conversion (as well as mu --> eee)

Variety of mechanisms:

Muon-electron conversion plans (The Next Big Thing in muon physics)

starts 2016; aims for 1e-13 (graphite target), followed by 1e-14 (SiC target)

2.6e-17

Mu2e Fermilab

2e-17

Muon-electron conversion plans (The Next Big Thing in muon physics)

starts 2016; aims for 1e-13 (graphite target), followed by 1e-14 (SiC target)

7e-15

For comparison, $BR\left(\mu
ightarrow e\gamma
ight)<$ 4e-13

2.6e-17

Fermilab

2e-17

Comparison with scattering experiments

Highest luminosity in fixed-target experiments

 $\sim 10^{37...38} / \left(\mathrm{cm}^2 \cdot \mathrm{s} \right)$

In a single muonic atom

Comparison with scattering experiments

Highest luminosity in fixed-target experiments

 $\sim 10^{37...38} / \left(\mathrm{cm}^2 \cdot \mathrm{s} \right)$

In a single muonic atom

Many atoms are studied in parallel: ~10¹¹ muons stopped per second; each lives about 10⁻⁶ seconds: 10⁵ atoms present:

$$\sim 10^{49}/\left({
m cm}^2\cdot{
m s}
ight)$$

What does the conversion rate mean?

Three fates of a bound muon:

- decay in orbit (dominates for Z < 11)
- nuclear capture (most likely for Z > 11)
- muon-electron conversion (less that 4.3e-12 cases) $\Gamma(\mu^{-}\text{Ti} \rightarrow e^{-}\text{Ti})/\Gamma(\mu^{-}\text{Ti} \rightarrow \text{all}) < 4.3 \times 10^{-12}$ PDG

On the other hand, for free muons: $\Gamma(\mu \rightarrow e\gamma)/\Gamma(\mu \rightarrow all) < 4.2 \times 10^{-13}$

Which of these bounds is "better"?

Two types of operators contribute to LFV

$$O_{L}^{D} = e m_{\mu} \left(\bar{e} \sigma^{\mu\nu} P_{L} \mu \right) F_{\mu\nu} \qquad \text{connects opposite chiralities}
O_{ff}^{V \ LL} = \left(\bar{e} \gamma^{\mu} P_{L} \mu \right) \left(\bar{f} \gamma_{\mu} P_{L} f \right) \qquad \text{equal chiralities}
O_{ff}^{V \ LR} = \left(\bar{e} \gamma^{\mu} P_{L} \mu \right) \left(\bar{f} \gamma_{\mu} P_{R} f \right) \qquad \text{crivellin, Davidson, Pruna, Signer}
...
$$P_{L/R} = \left(\mathbb{I} \mp \gamma^{5} \right) / 2$$$$

Only the chirality-flipping operators O^{D}_{L} and O^{D}_{R} contribute to $\mu
ightarrow e \gamma$

All operators contribute to the muon-electron conversion (because there are no external photons -> no gauge constraints).

Take-home message #1: conversion probes a broader range of physics.

Examples of New Physics scenarios

Dipole operators: closed SUSY loops (like g-2):

Scalar four-fermion operator, in case of a flavor-offdiagonal Higgs coupling

Contributes mainly to the conversion

How fast is the conversion induced by dipoles?

The same operator induces conversion, competing with capture:

Take-home message #2: in case of dipole operators, $BR(conversion) \sim \frac{BR(\mu \rightarrow e\gamma)}{200(Ti) - 400 (Al, Pb)}$

Czarnecki, Marciano, Melnikov

Background for the conversion search

Normal decay of the muon bound in the atom can produce high-energy electron,

Spectrum has to be well understood.

Electron spectrum in a bound muon decay e1/ Electron energy can $\boldsymbol{\nu}$ be as large as the μ whole muon mass Free µ dE_e Conversion DIO signal COMET, Mu2e WIST 2009 high-energy region shape-function region **F**e $\frac{1}{2}m_{\mu}$ m_μ

Muon decay-in-orbit spectrum: the shape-function region

Experiment: TWIST

Net effect:

$$\Gamma \rightarrow \left(1-\frac{\left(Z\alpha\right)^2}{2}\right)\Gamma$$

Überall, Phys. Rev. 119, 365 (1960)

Bigi, Shifman, Uraltsev, Vainshtein

Comparison with measurement: TWIST

The spectrum is modified very significantly: effects ~ 1/Za

Muon decay-in-orbit spectrum: the high-energy region

Experiments: Mu2e and COMET

Spectrum of the bound muon decay

AC, M. Dowling, X. Garcia i Tormo, W. Marciano, R. Szafron R. Szafron, AC

Radiative corrections to the electron spectrum

number of electrons in the end-point bin of 1 (0.1) MeV is reduced by 11% (16%)

Szafron, AC, PLB753, 61 (2016)

Anomalous magnetic moment

The puzzle of the muon magnetic moment

The 3.6 sigma discrepancy,

is rather large when compared with other bounds on New Physics.

New experimental concept at J-PARC

Can we use g_e -2?

New approach to g_{μ} -2 at J-PARC

Slower muons 300 MeV (instead of the "magic" 3.1 GeV)

Ultracold muons; no electric focusing!

Smaller ring r = 33 cm (instead of 7 m)

 $r [\text{in meters}] \simeq \frac{\gamma}{3B [\text{in Tesla}]}$

Strong, very precisely controlled magnetic field.

~ 10 times more muons than at Fermilab (compensates shorter lifetime).

	Brookhaven	Fermilab	J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		None
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

How to check g_{μ} -2?

Electron g-2 is likely sensitive to the same New Physics; but at present it is used to determine the fine-structure constant.

A new source of alpha is needed.

Nature 442, 516 (2006) PRA 89, 052118 (2014)

Fine structure constant from bound-e g-factor

$$m_e = rac{g}{2Z} rac{\omega_{
m cycl}}{\omega_L} M$$

Bound-electron g-2: the leading effect

Breit 1928: energy correction due to magnetic field in the hydrogen ground state.

$$\delta E = e \int d^3x f^2 v^* \left[1 - i\gamma \boldsymbol{\Sigma} \cdot \hat{\boldsymbol{r}} \gamma^5 \right] \gamma^5 \boldsymbol{A} \cdot \boldsymbol{\Sigma} \left[1 + i\gamma \boldsymbol{\Sigma} \cdot \hat{\boldsymbol{r}} \gamma^5 \right] v$$

$$g = 2 \cdot rac{1}{3} \left(1 + 2\sqrt{1 - (Zlpha)^2}
ight) \simeq 2 \left(1 - rac{(Zlpha)^2}{3}
ight)$$

Bound-electron g-2: the leading effect

Breit 1928: energy correction due to magnetic field in the hydrogen ground state.

$$\delta E = e \int d^3x f^2 v^* \left[1 - i\gamma \boldsymbol{\Sigma} \cdot \hat{\boldsymbol{r}} \gamma^5
ight] \gamma^5 \boldsymbol{A} \cdot \boldsymbol{\Sigma} \left[1 + i\gamma \boldsymbol{\Sigma} \cdot \hat{\boldsymbol{r}} \gamma^5
ight] v$$

$$g = 2 \cdot \frac{1}{3} \left(1 + 2\sqrt{1 - (Z\alpha)^2} \right) \simeq 2 \left(1 - \frac{(Z\alpha)^2}{3} \right)$$

Important: dependence on alpha; may be exploited to determine its value. (Use ions with various Z)

Bound-electron g-2: theory

AC Jentschura, Yerokhin

Next goal: $a^2(Za)^5$ corrections to g

More than 300 contributions.

A new source of alpha: highly-charged ions

Hydrogen-like lead

Boron-like lead

There is a combination of g-factors in both ions where the sensitivity to the nuclear structure largely cancels, but the sensitivity to alpha remains.

Shabaev, Glazov, Oreshkina, Volotka, Plunien, Kluge, Quint

New idea: medium-charged ions

Hydrogen-like ion

Lithium-like ion

Combine H-like and Li-like to remove nuclear dependence; then combine with a different nucleus, to remove free-g dependence!

Much interesting theoretical work remains to be done!

Yerokhin, Berseneva, Harman, Tupitsyn, Keitel: PRL (2016)

Summary

- * New era of muon studies just starting
- * Muon-electron conversion will probe very high mass scales
- * Binding modifies the muon decay and the electron g-factor
- * Theory of both effects: more fun than for free particles
- * Synergy with beautiful experiments: lepton-flavor violation, mass of the electron and, in future, the fine structure constant.
- * For g: $a(Za)^5$ effects almost finished; $a^2(Za)^5$ hopefully soon.
- * Opportunities for more theoretical improvement...

Lepton flavor violation: $\mu \rightarrow e\gamma$

New bound (MEG @ Paul Scherrer Institute)

$$\mathrm{BR}\left(\mu \to e\gamma\right) < 4.2 \cdot 10^{-13}$$

arXiv:1605.05081

This corresponds to the transition dipole moment

Sensitive to $d_{\mu \to e} \lesssim 3.5 \cdot 10^{-27} \ e \cdot \mathrm{cm}$ the heaviest "new physics" For comparison: electron EDM $d_e < 0.87 \cdot 10^{-28} \, e \cdot {
m cm}$

10.1126/science.1248213

 $d_{\mu} < 3 \cdot 10^{-22} \, e \cdot \mathrm{cm}$ muon g-2