Lake Louise Winter Institute 2017

Chateau Lake Louise, Canada February 24, 2017

Yossi Nir (Weizmann Institute of Science)

Plan of Talk

- 1. Introduction
 - Answers from the B factories
 - Questions to the LHC
 - The flavor puzzles
- 2. The flavor of h
 - The SM flavor of h
 - The BSM flavor of h
 - What if $BR(h \to \tau \mu) \sim 0.01?$
- 3. $R[D^{(*)}]$
- 4. Conclusions

Answers from the B factories

A brief history of experimental CPV

- 1964 2000
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$

A brief history of experimental CPV

- 1964 2000
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$
- $2000 2016, 5\sigma$
 - $S_{\psi K^0} = +0.691 \pm 0.017$
 - $S_{D_{CP}^{(*)}h} = +0.63 \pm 0.11$
 - $S_{\phi K_S} = +0.74 \pm 0.12, \ S_{\eta' K_S} = +0.63 \pm 0.06, \ S_{f_0 K_S} = +0.69 \pm 0.11$
 - $S_{K^+K^-K_S} = +0.68 \pm 0.10$
 - $S_{\pi^+\pi^-} = -0.66 \pm 0.06, C_{\pi^+\pi^-} = -0.31 \pm 0.05$
 - $S_{\psi\pi^0} = -0.93 \pm 0.15, \ S_{DD} = -0.98 \pm 0.17, \ S_{D^*D^*} = -0.71 \pm 0.09$
 - $\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.082 \pm 0.006, \ \mathcal{A}_{B_s \to K^{-}\pi^{+}} = +0.26 \pm 0.04$
 - $\mathcal{A}_{D_+K^{\pm}} = +0.195 \pm 0.027, \ \mathcal{A}_{K^+K^-\pi^{\pm}} = -0.118 \pm 0.022$

Testing CKM – Take I

- Assume CKM matrix is the only source of FV and CPV \implies Four CKM parameters: λ, A, ρ, η
- λ known from $K \to \pi \ell \nu$ A known from $b \to c \ell \nu$
- Many observables are $f(\rho, \eta)$:

$$-b \rightarrow u\ell\nu \implies \propto |V_{ub}/V_{cb}|^2 \propto \rho^2 + \eta^2$$

$$-\Delta m_{B_d}/\Delta m_{B_s} \implies \propto |V_{td}/V_{ts}|^2 \propto (1-\rho)^2 + \eta^2$$

$$-S_{\psi K_S} \implies \frac{2\eta(1-\rho)}{(1-\rho)^2+\eta^2}$$

$$-S_{\rho\rho}$$

$$-\mathcal{A}_{DK}$$

 $-\epsilon_K$

Answers from the B-factories - I

CKMFitter

Very likely, the CKM mechanism dominates FV and CPV

Testing CKM - take II

- Allow arbitrary new physics in $B^0 \overline{B}^0$ mixing: $\implies h_d e^{2i\sigma_d} = A^{\text{NP}}(B^0 \to \overline{B})/A^{\text{SM}}(B^0 \to \overline{B})$
- Consider only tree decays and $B^0 \overline{B}^0$ mixing: $|V_{ub}/V_{cb}|, \mathcal{A}_{DK}, S_{\psi K}, S_{\rho \rho}, \Delta m_{B_d}, \mathcal{A}_{SL}^d$
- Fit to the four parameters: ρ, η (CKM), h_d, σ_d (NP)
- Find whether $\eta = 0$ is allowed If not \implies The KM mechanism is at work
- Find whether $h_d \gtrsim 1$ is allowed If not \implies The CKM mechanism is dominant

Answers from the B-factories - II

•
$$\eta \neq 0 \Longrightarrow$$
 The KM mechanism is at work

Answers from the B-factories - III

- NP contributions to the observed FCNC are small $(s \leftrightarrow d, c \leftrightarrow u, b \leftrightarrow d, b \leftrightarrow s)$
- So what remains to be understood?

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated? If not 1st order PT – not electroweak baryogenesis
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated? If not 1st order PT – not electroweak baryogenesis
- What are the dark matter particles? No idea. No signs of missing energy events BSM
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated? If not 1st order PT – not electroweak baryogenesis
- What are the dark matter particles? No idea. No signs of missing energy events BSM
- What is the solution of the flavor puzzles? One of the topics of this talk

The flavor puzzles

• The SM flavor puzzle:

Why is there structure in the charged fermion flavor parameters?

- Smallness and hierarchy
- The SM flavor puzzle extended: Why is the neutrino flavor structure different? Neither smallness nor hierarchy
- The NP flavor puzzle:

If there is TeV-scale NP, why doesn't it affect FCNC? Degeneracy and alignment

Can we make progress?

- NP that couples to quarks/leptons \implies New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even an archical
- The NP flavor puzzle: With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM

Can we make progress?

- NP that couples to quarks/leptons \implies New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even an archical
- The NP flavor puzzle: With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM
- $h \implies$ The "NP" is already here! $Y_{\bar{f}_i f_j}$ are new flavor parameters that can be measured

The flavor of h

Relevant data

Observable	Experiment
$\mu_{\gamma\gamma}$	1.14 ± 0.14
μ_{ZZ^*}	1.17 ± 0.23
μ_{WW^*}	0.99 ± 0.15
$\mu_{bar{b}}$	0.7 ± 0.3
$\mu_{ au au}$	1.09 ± 0.23
$\mu_{\mu\mu}$	< 7
μ_{ee}	$< 4 \times 10^5$

•
$$\mu_f = \frac{\sigma_{\text{prod}} \text{BR}(h \to f)}{[\sigma_{\text{prod}} \text{BR}(h \to f)]^{\text{SM}}}$$

More relevant data

- $BR(t \rightarrow ch) \le 4.0 \times 10^{-3}$
- $BR(t \rightarrow uh) \le 4.5 \times 10^{-3}$

CMS, 1610.04857; ATLAS, 1509.06047

ATLAS, 1509.06047; CMS, 1610.04857

- $BR(h \to \tau \mu) \le 1.2 \times 10^{-2}$
- $BR(h \rightarrow \tau e) \le 6.9 \times 10^{-3}$
- $BR(h \rightarrow \mu e) \le 3.5 \times 10^{-4}$

CMS-PAS-HIG-16-005; ATLAS, 1604.07730

CMS, 1607.03561; ATLAS, 1604.07730

CMS, 1607.03561

$$Y^F$$
 vs. M_F : **SM**

•
$$Y^F = \sqrt{2}M_F/v$$

- Proportionality:
$$y_i \equiv Y_{ii}^F \propto m_i$$

- Factor of proportionality: $y_i/m_i = \sqrt{2}/v$

- Diagonality:
$$Y_{ij}^F = 0$$
 for $i \neq j$

Proportionality?

A. Efrati

- $y_e, y_\mu < y_\tau$: supports proportionality
- For y_t, y_b, y_τ : $y_3/m_3 \approx \sqrt{2}/v$
- The beginning of Higgs flavor physics

Diagonality?

- $\sqrt{Y_{tc}^2 + Y_{ct}^2} \le 0.12$
- $\sqrt{Y_{tu}^2 + Y_{ut}^2} \le 0.13$
- $\sqrt{Y_{\tau\mu}^2 + Y_{\mu\tau}^2} \le 3.1 \times 10^{-3}$
- $\sqrt{Y_{\tau e}^2 + Y_{e \tau}^2} \le 2.4 \times 10^{-3}$
- $\sqrt{Y_{\mu e}^2 + Y_{e \mu}^2} \le 5.3 \times 10^{-4}$
- No evidence for flavor changing Higgs couplings

Dery, Efrati, Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

Dery, Efrati, Hiller, Hochberg, YN, JHEP1308,006 [arXiv:1304.6727]

Dery, Efrati, YN, Soreq, Susič, PRD90, 115022 [arXiv:1408.1371]

Y^F vs. M_F : **BSM**

• Proportionality and diagonality may be violated at tree level

- Two (or more) Higgs Doublets
Without loss of generality,
$$\{\phi_M, \phi_A\}$$
 where
 $\langle \phi_M^0 \rangle = v/\sqrt{2}, \ \langle \phi_A^0 \rangle = 0$
 $h = s_{\alpha-\beta} \operatorname{Re}(\phi_M^0) + c_{\alpha-\beta} \operatorname{Re}(\phi_A^0)$
 $\implies Y_h^E = s_{\alpha-\beta}(\sqrt{2}M_E/v) + c_{\alpha-\beta}Y_A^E$

- Single Higgs doublet and non-renormalizable terms $\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \phi \overline{L_L} Z^e E_R;$ $M_E = \frac{v}{\sqrt{2}} \left(Y^e + \frac{v^2}{2\Lambda^2} Z^e \right), \quad Y^E = Y^e + 3 \frac{v^2}{2\Lambda^2} Z^e$ $\implies Y^E = (\sqrt{2}M_E/v) + \frac{v^2}{2\Lambda^2} Z^e$

Leptonic observables

Observable $(\ell = e, \mu)$	SM	Test
$\mu_{\tau^+\tau^-}$	1	Factor
$X_{\ell\ell} = \frac{\mathrm{BR}(h \to \ell^+ \ell^-)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$	$(m_\ell/m_ au)^2$	Proportionality
$X_{\ell\tau} = \frac{\mathrm{BR}(h \to \ell^{\pm} \tau^{\mp})}{\mathrm{BR}(h \to \tau^{+} \tau^{-})}$	0	Diagonality

• What can we learn from $\mu_{\tau\tau}$, $X_{\ell\ell}$, $X_{\ell\tau}$?

Leptonic observables

Observable $(\ell = e, \mu)$	SM	Test
$\mu_{ au^+ au^-}$	1	Factor
$X_{\ell\ell} = \frac{\mathrm{BR}(h \to \ell^+ \ell^-)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$	$(m_\ell/m_\tau)^2$	Proportionality
$X_{\ell\tau} = \frac{\mathrm{BR}(h \to \ell^{\pm} \tau^{\mp})}{\mathrm{BR}(h \to \tau^{+} \tau^{-})}$	0	Diagonality

- What can we learn from $\mu_{\tau\tau}$, $X_{\ell\ell}$, $X_{\ell\tau}$?
- ATLAS/CMS:

$$-\mu_{\tau\tau} = 1.09 \pm 0.23$$

- $X_{\mu\mu} < 12(m_{\mu}/m_{\tau})^2 \sim 0.05, \quad X_{ee} < 7 \times 10^5 (m_e/m_{\tau})^2 \sim 0.06$
- $X_{\mu\tau} = 0.087 \pm 0.045 < 0.2$

- 2HDM with Type II NFC Solution to the 2HDM flavor puzzle
- SM-EFT with MFV Solution to the NP flavor puzzle
- SM-EFT with FN Solution to the SM and NP flavor puzzles

- 2HDM with Type II NFC Solution to the 2HDM flavor puzzle
 - Universal correction to the diagonal couplings
- SM-EFT with MFV Solution to the NP flavor puzzle
- SM-EFT with FN Solution to the SM and NP flavor puzzles

- 2HDM with Type II NFC Solution to the 2HDM flavor puzzle
 - Universal correction to the diagonal couplings
- SM-EFT with MFV

Solution to the NP flavor puzzle

– Non-universal correction to the diagonal couplings

• SM-EFT with FN

Solution to the SM and NP flavor puzzles

- 2HDM with Type II NFC Solution to the 2HDM flavor puzzle
 - Universal correction to the diagonal couplings
- SM-EFT with MFV
 - Solution to the NP flavor puzzle
 - Non-universal correction to the diagonal couplings
- SM-EFT with FN

Solution to the SM and NP flavor puzzles

Non-universal correction to the diagonal couplings +
 Off-diagonal couplings

Higgs Physics = new flavor arena

Model	$Y_\tau^2/(2m_\tau^2/v^2)$	$(Y_{\mu}^2/Y_{\tau}^2)/(m_{\mu}^2/m_{\tau}^2)$	$Y_{\mu au}^2/Y_{ au}^2$
\mathbf{SM}	1	1	0
NFC-II	$(\sin \alpha / \cos \beta)^2$	1	0
MFV^*	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
\mathbf{FN}	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

Dery, Efrati, Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

Higgs Physics = new flavor arena

Model	$Y_\tau^2/(2m_\tau^2/v^2)$	$(Y_{\mu}^2/Y_{\tau}^2)/(m_{\mu}^2/m_{\tau}^2)$	$Y_{\mu au}^2/Y_{ au}^2$
\mathbf{SM}	1	1	0
NFC-II	$(\sin \alpha / \cos \beta)^2$	1	0
MFV^*	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

Dery, Efrati, Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

Measuring Y_{ij} can probe flavor models

 $h \to \tau \mu$

Relevant data

- BR $(h \to \tau \mu) = (8.9^{+3.9}_{-3.7}) \times 10^{-3}$ CMS, 1502.07400
- BR $(h \to \tau \mu) = (-7.6^{+8.1}_{-8.4}) \times 10^{-3}$

CMS, CMS-PAS-HIG-16-005

- BR $(h \to \tau \mu) = (5.3 \pm 5.1) \times 10^{-3}$ Atlas, 1604.07730
- Average: BR $(h \rightarrow \tau \mu) = (5.5 \pm 2.8) \times 10^{-3}$

Relevant data

- BR $(h \to \tau \mu) = (8.9^{+3.9}_{-3.7}) \times 10^{-3}$ CMS, 1502.07400
- BR $(h \to \tau \mu) = (-7.6^{+8.1}_{-8.4}) \times 10^{-3}$ c:

CMS, CMS-PAS-HIG-16-005

• BR $(h \to \tau \mu) = (5.3 \pm 5.1) \times 10^{-3}$

ATLAS, 1604.07730

- Average: BR $(h \rightarrow \tau \mu) = (5.5 \pm 2.8) \times 10^{-3}$
- What if $BR(h \to \tau \mu) \sim 0.005$?

Exciting \times 3

- $U(1)_{\mu} \times U(1)_{\tau}$ broken $\Lambda_{\rm LFV} \ll \Lambda_{\rm LNV}$?
- $BR(h \to \tau \mu) \not\ll BR(h \to \tau \tau)$ FCNC at tree level?
- $Y_E \not\propto M_E$ Not the SM Higgs?

The leptonic SM

- Symmetry: local $SU(2)_L \times U(1)_Y$
- Particle content: $3 \times \{L(2)_{-1/2} + E(1)_{-1}\}$
- Spontaneous breaking $\rightarrow U(1)_{\rm EM}$ by $\langle \phi(2)_{+1/2} \rangle \neq 0$

The leptonic SM

- Symmetry: local $SU(2)_L \times U(1)_Y$
- Particle content: $3 \times \{L(2)_{-1/2} + E(1)_{-1}\}$
- Spontaneous breaking $\rightarrow U(1)_{\rm EM}$ by $\langle \phi(2)_{+1/2} \rangle \neq 0$
- \implies Accidental symmetry: $U(1)_e \times U(1)_\mu \times U(1)_\tau$
- $h \to \tau \mu$ forbidden
- Accidental symmetries are broken by higher dimension terms (SM=EFT)

 $h \to \tau \mu$

d = 5 terms

•
$$\frac{(Y^N)_{ij}}{\Lambda}L_iL_j\phi\phi$$

- $M_N = \frac{Y^N v^2}{2\Lambda} \Longrightarrow$ Explain neutrino mass and mixing
- Break $U(1)_e \times U(1)_\mu \times U(1)_\tau$
- Break also total lepton number
- $h \to \tau \mu$ allowed, but...
 - Loop suppression $\sim \alpha_2^2$
 - Mixing suppression $\sim |U_{\mu3}U_{\tau3}|^2$
 - GIM suppression ~ $(\Delta m_{23}^2/m_W^2)^2$
- BR $(h \to \tau \mu) \sim 10^{-50}$

d = 6 terms

•
$$\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \phi \overline{L_i} Z_{ij}^e E_j$$

 $- M_E = \frac{v}{\sqrt{2}} \left(Y^e + \frac{v^2}{2\Lambda^2} Z^e \right)$
 $- Y_h^E = Y^e + 3 \frac{v^2}{2\Lambda^2} Z^e$
 $- \Longrightarrow Y_h^E = (\sqrt{2}M_E/v) + \frac{v^2}{2\Lambda^2} Z^e$

• For $\Lambda/\sqrt{Z_{\mu\tau}^e} \sim \text{few TeV: BR}(h \to \tau \mu) \sim 0.01$

• Note:
$$\frac{1}{\Lambda^2} \phi \overline{\mu_L} X^e_{\mu\tau} \sigma_{\mu\nu} \tau_R F^{\mu\nu} \implies \tau \to \mu \gamma$$

The scale of LFV

•
$$\frac{1}{\Lambda_{\rm LNV}}LL\phi\phi$$

 $m_{\nu} \sim 0.1 \text{ eV} \implies \Lambda_{\text{LNV}} \sim 10^{15} \text{ GeV}$ Intriguingly close to Λ_{GUT}

•
$$\frac{1}{\Lambda_{\rm LFV}^2} \phi^{\dagger} \phi L \phi E^c$$

 $BR(h \rightarrow \tau \mu) \sim 0.01 \implies \Lambda_{LFV} \sim 5 \text{ TeV}$ New physics should be directly accessible at the LHC!

Reminder: SM-FCNC are loop suppressed

- The gluon and the photon do not mediate FCNC at tree level because massless gauge bosons have flavor-universal and, in particular, flavor diagonal couplings
- Within the SM, the Z-boson does not mediate FCNC at tree level because all fermions with the same chirality, color and charge originate in the same $SU(2)_L \times U(1)_Y$ representation
- Within the SM, the h-boson does not mediate FCNC at tree level because
 - All SM fermions are chiral \Longrightarrow no bare mass terms
 - The scalar sector has a single Higgs doublet

Loop suppression?

- All models with no bare mass terms and with NFC: $h \rightarrow \tau \mu$ is loop suppressed
- With loop suppression: $(v^2/\Lambda^2)(\alpha_W/4\pi)X_{\mu\tau} \not\ll y_{\tau} \sim 10^{-2}$ Very challenging model building
- MSSM excluded Aloni, YN, Stamou, JHEP 04(2016)162 [1511.00979]

Brignole, Rossi, NPB701(2004)3; Arana-Catania, Arganda, Herrero, JHEP09(2013)160

• Models with tree-level-FCNC favored

Not the SM Higgs?

 $Y^h_{\mu\tau} \neq 0$ at tree level:

• Single Higgs doublet and vector-like leptons Strongly disfavored by the $\tau \to \mu \mu \mu$ bound

Efrati, YN, Stamou, work in progress

Dorsner et al., 1502.07784

• Multi-Higgs doublet models Not easy to combine with flavor models

Vector-like leptons

- In all models of vector-like leptons, there are unavoidable tree level contributions to $Z \to \tau \mu$ and $\tau \to \mu \mu \mu$
- For each type of vector-like leptons, there is a parameter-independent relation:

 $\frac{\mathrm{BR}(h \to \tau \mu) / \mathrm{BR}(h \to \tau \tau)}{\mathrm{BR}(Z \to \tau \mu) / \frac{1}{3} \mathrm{BR}(Z \to \nu \bar{\nu})} = \frac{1}{2}$

Efrati, YN, Stamou, work in progress

- Experiment: $\frac{\text{BR}(Z \to \tau \mu)}{\frac{1}{3} \text{BR}(Z \to \nu \bar{\nu})} < 1.8 \times 10^{-4}$ $\implies \text{BR}(h \to \tau \mu) < 2 \times 10^{-5}$
- Still, possible to account for ${\rm BR}(h\to\tau\mu)\sim 0.005$ with fine-tuned cancelations
- Strongly disfavored

2HDM

- Without loss of generality, use the basis $\{\phi_M, \phi_A\}$ where $\langle \phi_M^0 \rangle = v/\sqrt{2}, \ \langle \phi_A^0 \rangle = 0$
- $h = s_{\alpha-\beta} \operatorname{Re}(\phi_M^0) + c_{\alpha-\beta} \operatorname{Re}(\phi_A^0)$ $\implies Y_h^E = s_{\alpha-\beta}(\sqrt{2}M_E/v) + c_{\alpha-\beta}Y_A^E$
- Note: Y_A^E arbitrary
- With $c_{\alpha-\beta}(Y_A^E)_{\mu\tau} \not\ll s_{\alpha-\beta}(\sqrt{2}m_{\tau}/v)$: BR $(h \to \tau \mu) \not\ll BR(h \to \tau \tau)$
- With all other $(Y_A^F)_{ij} = 0$, no phenomenological problems
- 2HDM: the favored option
- Inconsistent with motivated flavor models

R[(*)

NP in flavor?

• Most tensions either disappeared or below 3σ or involve large hadronic uncertainties:

- Lepton universality in $B \to D^{(*)} \tau \nu$
- Lepton universality in $B \to K \ell^+ \ell^-$
- Angular distribution in $B \to K^* \ell^+ \ell^-$
- CP violation in $D \to K^+ K^-, \pi^+ \pi^-$
- CP violation in $B_{d,s} \to \ell \nu X$

The $R[D^{(*)}]$ puzzle

- $R[D^{(*)}] \equiv \Gamma(B \to D^{(*)}\tau\nu) / \Gamma(B \to D^{(*)}\ell\nu), \quad (\ell = e, \mu)$
- BaBar, Belle, LHCb: $R(D) = 0.403 \pm 0.047, \quad R(D^*) = 0.310 \pm 0.017, \quad \rho = -0.23$
- The SM: $R(D) = 0.300 \pm 0.008, \quad R(D^*) = 0.252 \pm 0.003$
- 3.9 σ deviation from the SM

The $R[D^{(*)}]$ solutions

- 30% corrections to SM $b \rightarrow c$ tree-level decay \implies Most likely, NP contributes at tree level as well
- Seven possibilities:
 - Vector-bosons: $W'_{\mu}(1,3)_0, U_{\mu}(3,1)_{+2/3}, X_{\mu}(3,3)_{+2/3}, V_{\mu}(3,2)_{-5/6}$

- Scalars:

 $S(3,1)_{-1/3}, T(3,3)_{-1/3}, D(3,2)_{+7/6}$

• In all cases, quark doublets are involved \implies NP in FCNC

The $R[D^{(*)}]$ -related phenomenology

- $t \to c \tau^+ \tau^-$
- $b \rightarrow s \tau^+ \tau^-$
- $B_c \to \tau \nu$
- $\Lambda_b \to \Lambda_c \tau \nu$
- $b\bar{b}/c\bar{c} \rightarrow \tau^+\tau^-$
- $\Upsilon, \psi o au^+ au^-$ Aloni, Efrati, YN, work in progress

Conclusions

Lessons from flavor factories

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is the dominant source of the CP violation observed in meson decays
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- The CKM mechanism is the dominant source of the flavor violation observed in meson decays
- NP contributions to the observed FCNC are small $(s \leftrightarrow d, c \leftrightarrow u, b \leftrightarrow d, b \leftrightarrow s)$

h Physics = New Flavor Arena

Measure:

- Third generation couplings: y_t, y_b, y_τ
- Second generation couplings: y_c, y_s, y_μ
- Flavor violating couplings: $Y_{\mu\tau}, Y_{e\tau}, Y_{ct}, Y_{ut}$

Test:

- SM
- MFV
- FN
- NFC
- • •

Conclusions

 $\underline{h \to \mu \tau}$

If $BR(h \to \tau \mu) \sim 0.005$:

- SM, NFC, MLFV* excluded
- New physics at the TeV scale
- Most likely, FCNC at tree level
- Most likely, extra scalar doublets
- Challenge to present explanations of the flavor puzzles

Conclusions

If $R[D^{(*)}]$ deviates by $\mathcal{O}(30\%)$ from SM:

- SM, 2HDM+NFC excluded
- New physics at TeV scale
- Most likely, extra bosons
- Search for additional effects of FCNC and/or lepton non-universality

2HDM and Flavor Models

• Are there viable and natural flavor models that have

 $- Y_{\mu\tau} \sim 0.01$ but $Y_{e\mu} \lesssim 10^{-6}$?

• Natural Flavor Conservation (NFC)

– Impossible $(Y_{\mu\tau} = 0)$

- Minimal Lepton Flavor Violation (MLFV)
 - Y^E -spurion: Impossible $(Y_{\mu\tau} = 0)$
 - $-Y^E, Y^N, M^N$ -spurions: Possible with fine-tuning
- Froggatt-Nielsen (FN):
 - $-Y_{e\mu}/Y_{\mu\tau} \sim |U_{e2}/U_{\mu3}|(m_{\mu}/m_{\tau}) \sim 0.05 \Longrightarrow \text{too large}$
 - Possible with supersymmetry and holomorphic zeros

Dery, Efrati, YN, Soreq, Susič, PRD90, 115022 $[\mathrm{arXiv}:1408.1371]$

Natural Flavor Conservation (NFC)

- A solution to the 2HDM flavor puzzle
- NFC \equiv Each fermion sector (U, D, E) couples to a single Higgs doublet
- Type II: $\overline{Q}Y^U U\phi_2 + \overline{Q}Y^D D\phi_1 + \overline{L}Y^E E\phi_1$

•
$$Y_h^E = (\sin \alpha / \cos \beta)(\sqrt{2}M_E/v)$$

• Proportionality and diagonality maintained, but with a different factor of proportionality

Minimal Flavor Violation (MFV)

- A solution to the NP flavor puzzle
- SM: When $Y^F = 0 \Longrightarrow$ A large global symmetry $SU(3)_Q \times SU(3)_U \times SU(3)_D \times SU(3)_L \times SU(3)_E$
- MFV \equiv The only NP breaking of the $SU(3)^5$ symmetry: $Y^U(3, \bar{3}, 0, 0, 0), \ Y^D(3, 0, \bar{3}, 0, 0), \ Y^E(0, 0, 0, 3, \bar{3})$
- Example: $\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \overline{L_{Li}} Z^e_{ij} \phi E_{Rj}$
- $Z^e = (a + bY^{E\dagger}Y^E)Y^E$
- Proportionality violated, diagonality maintained

The Froggatt-Nielsen mechanism (FN)

- A solution to both the SM and the NP flavor puzzles
- A $U(1)_H$ symmetry broken by a small spurion $\epsilon_H(-1) \ll 1$
- Example: $\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \overline{L_{Li}} Z^e_{ij} \phi E_{Rj}$
- $Z_{ij}^e = \mathcal{O}(y_j |U_{ij}|)$
- Proportionality and diagonality violated

Theory

Recent related work

- Blankenburg, Ellis, Isidori, Phys. Lett. B712, 386 (2012)
- Bhattacharyya, Leser, Pas, Phys. Rev D86, 036009 (2012)
- Harnik, Kopp, Zupan, JHEP 1303, 026 (2013)
- Davidson, Verdier, Phys. Rev. D80, 111701 (2012)
- Celis, Cirigliano, Passemar, Phys. Rev. D89, 013008 (2014)
- Falkowski, Straub, Vicente, JHEP 1405, 092 (2014)
- Delaunay et al., Phys. Rev. D89, 033014 (2014)
- Gorbahn, Haisch, JHEP 1406, 033 (2014)
- Kagan *et al.*, arXiv:1406.1722
- Crivellin, D'Ambrosio, Heeck, arXiv: 1501.00993