

Measurement of Cross Sections and Properties of the Higgs Boson Using the ATLAS Detector

<u>Stephan Hageböck</u> On behalf of the ATLAS Collaboration 20.02.2017, Lake Louise, Canada

Run 2 Higgs Results from ATLAS

- Run 2 so far:
 - 2015: 3.2 fb⁻¹
 - 2016:~36 fb⁻¹ on disk
 - Available for ICHEP 2016: ~ 13 fb⁻¹
- Cross sections:
 - ∎ Η→γγ
 - H→ZZ
 - $H \rightarrow WW$: WH and VBF production
- Updates / refinements of searches:
 - H→µµ / bb
 - ttH production
- Combinations:
 - $= H \rightarrow \gamma \gamma / ZZ$
 - 3 channels on ttH production

$H \rightarrow \gamma \gamma$

- As in Run 1: Fit S+B model in m_{γγ} spectrum (m_H = 125.09 GeV)
- Split into 13 categories:
 - Optimise background model: Data-driven, backed by MC
 - Probe production channels: ttH / VH / VBF / gg

ATLAS Preliminary

√s = 13 TeV, 13.3 fb⁻¹

H→γγ, m_⊥ = 125.09 GeV

150

160

Inclusive

140

 $m_{\gamma\gamma}$ (inclusive)

Data

Signal

120

Background

Signal + background

130

$H \rightarrow \gamma \gamma$

- As in Run 1: Fit S+B model in m_{γγ} spectrum (m_H = 125.09 GeV)
- Split into 13 categories:
 - Optimise background model: Data-driven, backed by MC
 - Probe production channels: ttH / VH / VBF / gg

Events / GeV

data - bkg

6000

5000

4000

3000 2000

1000

200

-200

110

$H \rightarrow \gamma \gamma$

- "Simplified template cross sections" Stage 0: add $|\mathbf{y}_{\mathrm{H}}| < 2.5$ arxiv:1610.07922 $\sigma_{ggH} \times \mathcal{B}(H \rightarrow \gamma \gamma) = 63 \frac{+30}{-29}$ fb $\mathcal{D}(H \rightarrow \gamma \gamma) = 17.9 \pm 63.6$
 - $\sigma_{\text{VBF}} \times \mathcal{B}(H \to \gamma \gamma) = 17.8 \stackrel{+6.3}{_{-5.7}} \text{ fb}$ $\sigma_{\text{VHlep}} \times \mathcal{B}(H \to \gamma \gamma) = 1.0 \stackrel{+2.5}{_{-1.9}} \text{ fb}$ $\sigma_{\text{VHhad}} \times \mathcal{B}(H \to \gamma \gamma) = -2.3 \stackrel{+6.8}{_{-5.8}} \text{ fb}$ $\sigma_{t\bar{t}H} \times \mathcal{B}(H \to \gamma \gamma) = -0.3 \stackrel{+1.4}{_{-1.1}} \text{ fb}$
- For each category:
 - Fit N^{sig}
 - Use efficiencies and acceptance corrections to extract cross section x BR

$$N_k^{\text{sig}} = \sum_i \sigma_i \cdot \mathcal{B}(H \to \gamma \gamma) \cdot \epsilon_{ik} \cdot A_{ik} \cdot \int L \, \mathrm{d}t$$

$H \rightarrow \gamma \gamma$

- Not splitting into production modes: Differential cross sections
- Restricted to fiducial region to reduce model dependencies →backup
- 7 variables: $dN(jet), dy(H), dp_T(H), dcos(\theta^*) dm(jj), dp_T(j1), d\Phi(jj)$
- Limited by data statistics

N(jet)

$H \rightarrow ZZ \rightarrow 41$

- Search for two pairs of oppositely charged leptons
 - Very clean: S/B ≈ 2
 - Mostly ZZ background
- Fiducial cross sections:
 - Total:

 $\sigma_{\rm fid,sum}^{4\ell} = 4.48^{+1.01}_{-0.89} \, {\rm fb} \qquad {\rm SM: 3.1 \pm 0.2}$

Per decay channel:

Final state	measured $\sigma_{\rm fid}$ [fb]	$\sigma_{ m fid,SM}$ [fb]
4μ	$1.28 \substack{+0.48 \\ -0.40}$	$0.93 \ ^{+0.06}_{-0.08}$
4 <i>e</i>	$0.81 \ {}^{+0.51}_{-0.38}$	$0.73 \ ^{+0.05}_{-0.06}$
2µ2e	$1.29 \substack{+0.58 \\ -0.46}$	$0.67 \ ^{+0.04}_{-0.04}$
2e2µ	$1.10 \substack{+0.49 \\ -0.40}$	$0.76 \ ^{+0.05}_{-0.06}$

$H \rightarrow ZZ \rightarrow 41$

 Also: Cross sections of gg / VBF / VH

- Low statistics
 → Train BDTs to select different modes
- Compatibility with SM:
 ggF: 1.1 σ
 - **VBF**: 1.4 σ

$$\sigma_{ggF+b\bar{b}H+t\bar{t}H} \cdot \mathcal{B}(H \to ZZ^*) = 1.80^{+0.49}_{-0.44} \text{ pb} \quad \text{SM: } 1.31 \pm 0.07 \text{ pb}$$

$$\sigma_{\text{VBF}} \cdot \mathcal{B}(H \to ZZ^*) = 0.37^{+0.28}_{-0.21} \text{ pb} \qquad 0.100 \pm 0.003 \text{ pb}$$

$$\sigma_{\text{VH}} \cdot \mathcal{B}(H \to ZZ^*) = 0^{+0.15} \text{ pb} \qquad 0.059 \pm 0.002 \text{ pb}$$

Combine $H \rightarrow ZZ, H \rightarrow \gamma\gamma$

Searches

+

${ m H} ightarrow { m bb}$

- Highest branching fraction, but not observed so far: Run 1, ATLAS+CMS: 2.6 σ (includes ttH)
- Challenging backgrounds:
 - Focus on VH
 - 0 lep: $Z \rightarrow vv$
 - 1 lep: $W \rightarrow lv$
 - 2 lep: $Z \rightarrow ll$
 - Restrict 0 & 1 lepton to p_T^V > 150 GeV
 - Heavy usage of BDTs in all categories
- Higgs: µ = 0.2 ± 0.5
 - Diboson cross-check: $\mu = 0.9 \pm 0.4$
- Also VBF + γ: μ = -3.9 ± 2.8

$H \rightarrow \mu \mu$

Challenging:

- Tiny branching fraction (0.02 %)
- High Drell-Yan background
- Strategy:
 - Fit $m_{\mu\mu}$ in opposite charge $\mu\mu$ events
 - Several categories for higher sensitivity: VBF / p_T^{µµ} / η_µ
- 95 % CL limits on µ (m_H = 125.9 GeV):
 - Run 2: 4.4 (5.5)
 - Run 1+2: 3.5 (4.3)

Combination of ttH Measurements

- ttH massively benefits from 13 TeV
 σ_{13 TeV} = 3.9 x σ_{8 TeV}
- But: Challenging final states
- 3 new results:
 - $ttH, H \rightarrow \gamma \gamma$
 - ttH, $2 \rightarrow 4$ lepton final states
 - Mostly $H \rightarrow WW / \tau \tau (/ ZZ)$
 - ∎ ttH,H→bb
- Significance:
 - 2.8 σ (exp. 1.8 σ)
 - Run 1: exp. 1.5 σ
- Compatibility of 3 channels: 7%

Summary

- Run 2: First results available
- Cross sections
 - Fiducial
 - Production modes / differential
- Searches: Updates from
 - H→bb:VH,VBF+ γ
 - H→µµ
 - ttH
- All consistent with SM
- More to come:
 ~ 33 fb⁻¹ "good for physics" in 2016

Overview of Run 2 results from ATLAS

Channel	μ
$\gamma\gamma + ZZ$	1.13 ± 0.18
• 77	0.85 ± 0.22
• $ZZ \rightarrow 41$	1.37 ± 0.40
• γγ + ZZ (VBF)	2.24 ± 0.80
bb	0.21 ± 0.51
μμ	< 4.4 (95 % CL)
ttH ($\gamma\gamma$ + Multilep + bb)	1.8 ± 0.7
WW (VBF)	1.7 ± 1.1

Backup

H→WW

- Relatively small dataset: 5.8 fb⁻¹
- Restrict to distinctive production channels:
 - VBF: 2 leptons + forward jets
 - WH: 3 isolated leptons
- Create signal and background control regions and fit yields

$$\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*} = 1.4^{+0.8}_{-0.6} (\text{stat})^{+0.5}_{-0.4} (\text{sys}) \text{ pb}$$

 $\sigma_{WH} \cdot \mathcal{B}_{H \to WW^*} = 0.9^{+1.1}_{-0.9} (\text{stat})^{+0.7}_{-0.8} (\text{sys}) \text{ pb}$

2

ions

SM VBF: 0.81 ± 0.02 pb WH: 0.293 ± 0.007 pb

VBF

<u>JHEP08 (2016) 104</u>

$H \rightarrow WW$

- Differential cross sections with 8 TeV data
- Restricted to $H \rightarrow WW \rightarrow ev\mu v$

Higgs Mass

- Best measurement by combining ATLAS & CMS Run 1 data
- Limited by statistical uncertainty
- \rightarrow Update only makes sense with more data

Coupling ratioBest-fit value95 % CL exclusion regionsCombinedObservedExpectedObserved $\tilde{\kappa}_{HVV}/\kappa_{SM}$ -0.48 $(-\infty, -0.55] \bigcup [4.80, \infty)$ $(-\infty, -0.73] \bigcup [0.63, \infty)$ $(\tilde{\kappa}_{AVV}/\kappa_{SM}) \cdot \tan \alpha$ -0.68 $(-\infty, -2.33] \bigcup [2.30, \infty)$ $(-\infty, -2.18] \bigcup [0.83, \infty)$

Higgs CP Measurements: Bosons

- Analysis of spin-sensitive observables with 7/8 TeV data
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow ZZ \rightarrow 41$
 - $= H \rightarrow WW \rightarrow ev\mu v$
- Pure CP-eigenstate hypotheses:
 J^P = 0⁺ (>99.9% CL)
- Also test admixture of BSM terms in HVV interactions:

Fiducial Cross Sections: $H \rightarrow \gamma \gamma$

	diphoton baseline	VBF enhanced	single lepton
Photons	$ \eta $	< 1.37 or $1.52 < \eta < 2.37$	
	$p_{\mathrm{T}}^{\gamma_{1}} >$	$0.35 m_{\gamma\gamma}$ and $p_{\mathrm{T}}^{\gamma_2} > 0.25 m_{\gamma\gamma}$	(
Jets	-	$p_{\rm T} > 30 {\rm GeV} \ , \ y < 4.4$	-
	-	$m_{jj} > 400 \text{GeV}, \Delta y_{jj} > 2.8$	-
	-	$ \Delta \phi_{\gamma\gamma,jj} > 2.6$	-
Leptons	-	-	$p_{\rm T} > 15 {\rm GeV}$
			$ \eta < 2.47$

Fiducial region	Measured cross section (fb)	SM prediction (fb)	
Baseline	$43.2 \pm 14.9 (\mathrm{stat.}) \pm 4.9 (\mathrm{syst.})$	$62.8^{+3.4}_{-4.4}$	$[N^{3}LO + XH]$
VBF-enhanced	$4.0 \pm 1.4 ({\rm stat.}) \pm 0.7 ({\rm syst.})$	2.04 ± 0.13	[NNLOPS + XH]
single lepton	$1.5 \pm 0.8 ({ m stat.}) \pm 0.2 ({ m syst.})$	0.56 ± 0.03	[NNLOPS + XH]

Fiducial Cross Sections: $H \rightarrow ZZ$

Lepton definition			
Muons: $p_{\rm T} > 5 \text{ GeV}, \eta < 2.7$ Electrons: $p_{\rm T} > 7 \text{ GeV}, \eta < 2.47$			
Pairing			
Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection			
Lepton kinematics:	Leading leptons $p_{\rm T} > 20, 15, 10 \text{ GeV}$		
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$		
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1(0.2)$ for same(opposite)-flavour leptons		
J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs		
Mass window:	$115 < m_{4\ell} < 130 \text{ GeV}$		

<u>Eur. Phys. J. C75 (2015) 476</u>

23

Diboson CP Measurements

- Probe possible admixture of BSM spin-0 states to SM 0⁺
- Use effective field theory interaction Lagrangian

$$\mathcal{L}_{0}^{V} = \left\{ \cos(\alpha) \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha) \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}.$$

$$(1)$$

J^P	Model	Values of tensor couplings			
_		$\kappa_{\rm SM}$	κ_{HVV}	κ_{AVV}	α
0+	SM Higgs boson	1	0	0	0
0_{h}^{+}	BSM spin-0 CP-even	0	1	0	0
0^{-}	BSM spin-0 CP-odd	0	0	1	$\pi/2$

õ

Higgs CP Measurements: VBF & ττ

- Test CP invariance in VBF production: ττ very sensitive
- Closely follows 8 TeV H→ττ analysis
- Add CP-violating contribution to SM matrix element: *M* = *M*_{SM} + *d* · *M*_{CP-odd}
- Interference term is CP-odd: $|\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + \tilde{d} \cdot 2\text{Re}(\mathcal{M}_{SM}^{*}\mathcal{M}_{CP\text{-odd}}) + \tilde{d}^{2} \cdot |\mathcal{M}_{CP\text{-odd}}|^{2}$
- Yields "optimal observable": $\mathcal{OO} = \frac{2\text{Re}(\mathcal{M}_{\text{SM}}^*\mathcal{M}_{\text{CP-odd}})}{|\mathcal{M}_{\text{SM}}|^2}$
- No sign of CP violation: -0.11 < d < 0.05 (68% CL)

Higgs Branching Fractions

25