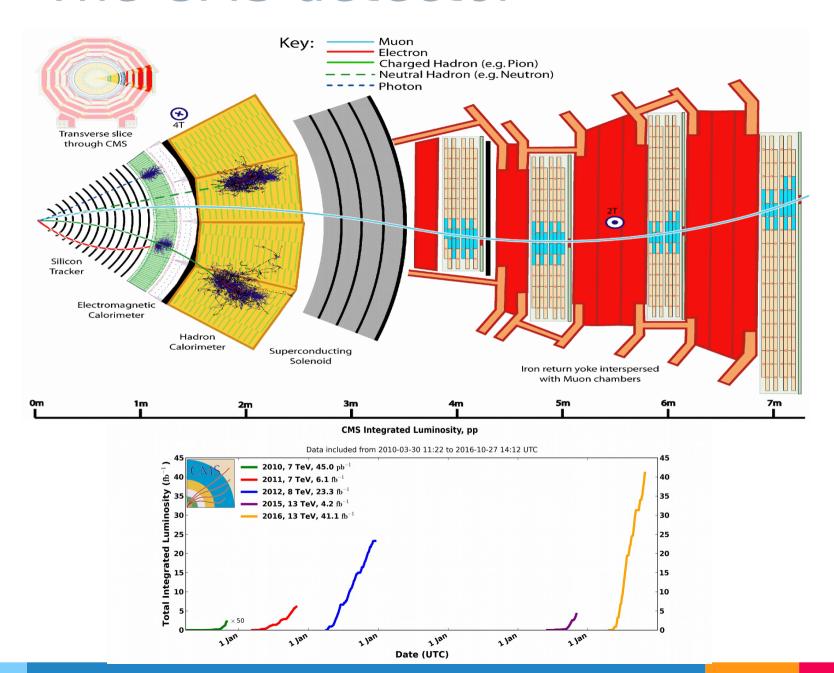


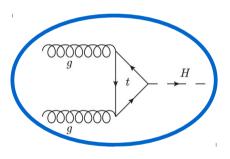
Lorenzo Russo, on behalf of the CMS collaboration Università di Siena & INFN di Firenze

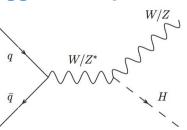

Results on Higgs to WW with the CMS detector at 13 TeV

"Lake Louise 2017: Lake Louise Winter Institute 2017" 19-26 Feb. 2017, University of Alberta, Lake Louise (Canada)

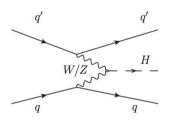
Outline

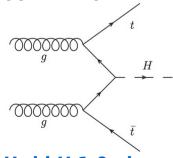
- **Analysis H** → **WW** → 2ℓ2υ **Standard Model Higgs**
- High mass analysis, $X \rightarrow WW \rightarrow 2\ell 2v$, in range 200-1000 GeV

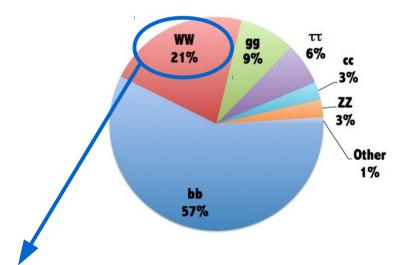

The CMS detector


The Higgs boson in the Standard Model

Higgs boson production processes


Higgs boson decays

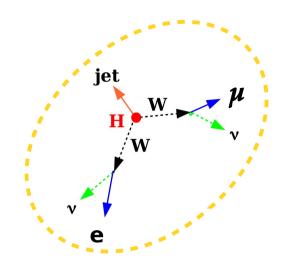

ggH 48.58 pb


WH+ZH 2.38 pb

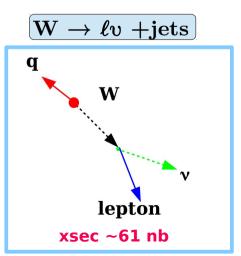
qqH 3.78 pb

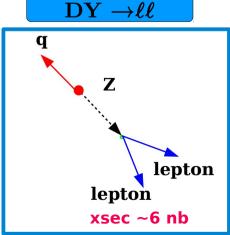
ttH+bbH 1.0 pb

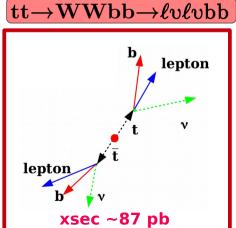
WW channel has the second largest **Branching Ratio** and a reasonable level of irreducible background.

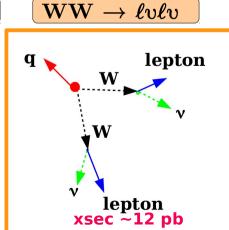

xsec @ 13 TeV

Analysis $H \rightarrow WW \rightarrow 2\ell 2\nu$

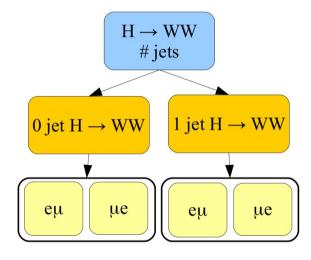

Only the dominant production mechanism, the **gluon fusion**, is targeted in this analysis. Final states in which the two W bosons decay **leptonically** are studied. The data sample correspond to a total integrated luminosity of **2.3 fb**⁻¹ collected in 2015.


Signal and backgrounds

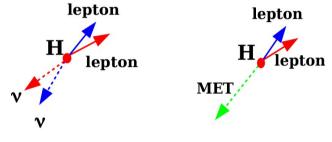

ightharpoonup Signal: only eµ final state, including au leptons decaying leptonically, is studied to suppress DY background. Extra jets in the final state arise only from initial state radiation.



→ Main backgrounds: several processes can lead to the similar event properties.



Analysis strategy


- → To increase SM Higgs boson sensitivity, events are categorized as follow:
 - O jet → background dominated by nonresonant WW.
 - 1 jet → contribution from non-resonant WW and top background are of similar importance.
 - $e\mu$ and μe p_T ordered leptons, to exploit different fake rate for e and μ .
 - Two jet → Not studied

The **gluon fusion** is the dominant production process in jets categories.

Analysis strategy

→ The neutrinos in the final state escape direct detection and lead to large MET: impossible to reconstruct the Higgs invariant mass spectrum.

Final state in physics process

Final state inside CMS detector

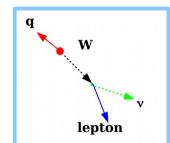
→ In the transverse plane the momentum is conserved: di-leptons and MET system is considered to build a transverse mass variable:

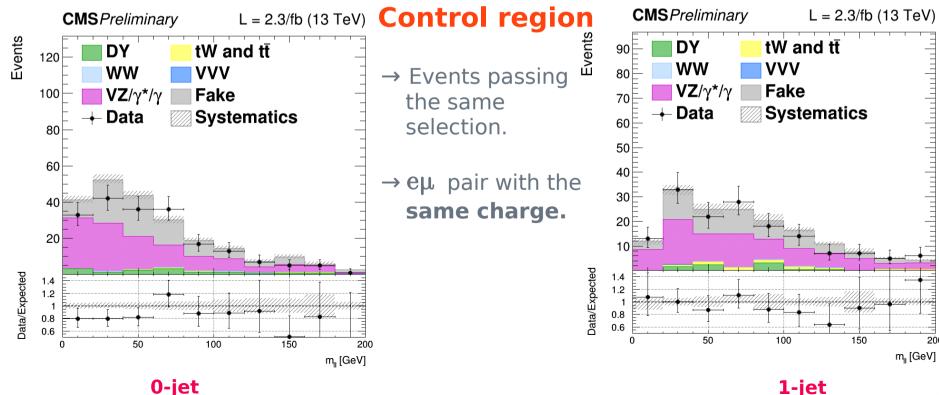
$$m_{\mathrm{T}}^{\mathrm{H}} = \sqrt{2p_{\mathrm{T}}^{\ell\ell}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos\Delta\phi(\ell\ell,\vec{E}_{\mathrm{T}}^{\mathrm{miss}}))}$$

Events selection

Triggers

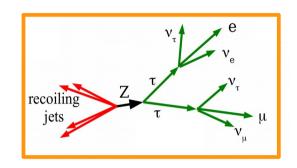
- → **Single lepton** trigger: the thresholds on lepton p_T are 23(18) GeV for $e(\mu)$.
- → **Di-lepton** $e(\mu)$ trigger: minimum $p_T 17(8)$ GeV for $e(\mu)$ case or 17(12) for $\mu(e)$ case.
- → Trigger **efficiency** for Single and di-lepton is 99%.

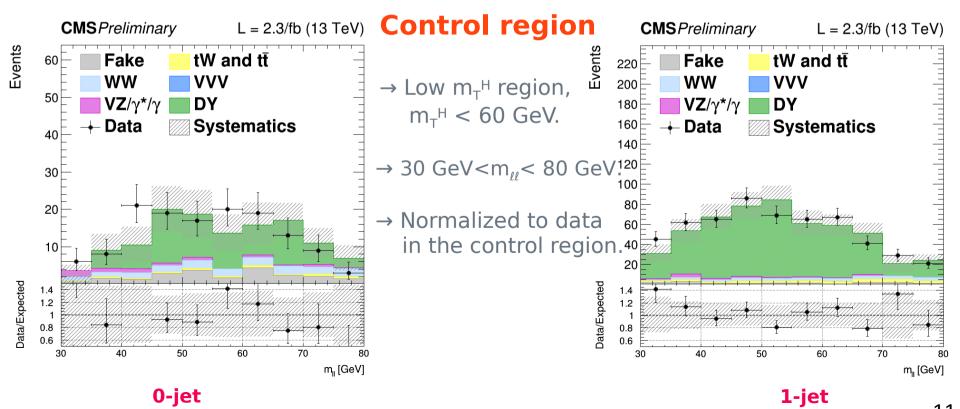

Baseline analysis selection


- → Exactly one electron and one muon with opposite charge.
- → leading lepton $p_T>20$ GeV, trailing lepton $p_T>10(13)$ GeV for $\mu(e)$.
- → Well identified and isolated leptons to reject fake's leptons.
- \rightarrow m_{,,,}>12 GeV to remove QCD backgrounds.

Background suppression: W+jets (Fake)

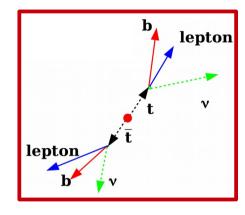
- → Real lepton and MET. The jet is identified wrongly as second lepton.
- → Reject by lepton isolation.

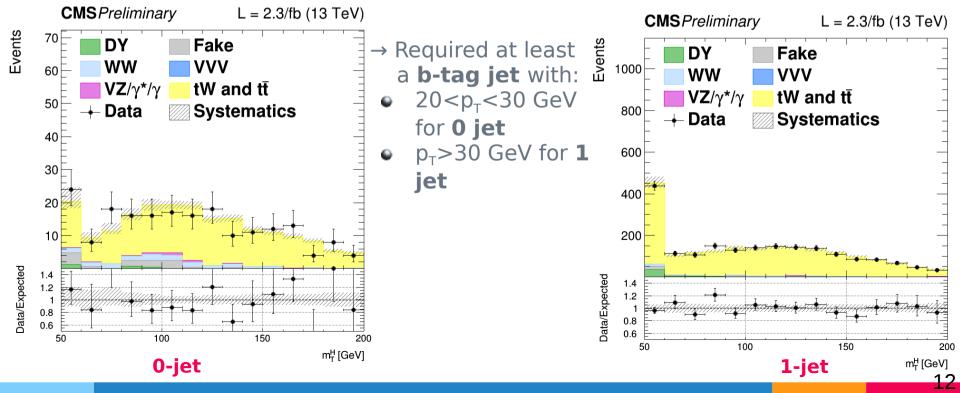




Background suppression: DY

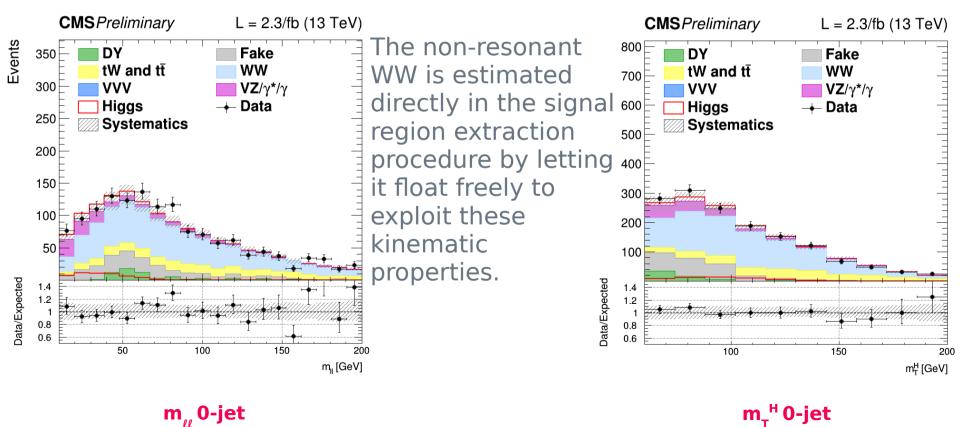
→ The DY→ $\tau\tau$ →e μ , is dominant at **low m_T^H**. Cuts to suppress: MET >20 GeV, $p_{\tau}^{\ell\ell}$ >30 GeV and m_{τ}^{H} >60 GeV.





Background suppression: Top

→ The Top background is characterized by b-jet: to reject this background **no b-tag** jets with p_T>20 GeV are required.


Control region: is used to normalize the simulation to the data in the region. This is then used to estimate top background in the signal region.

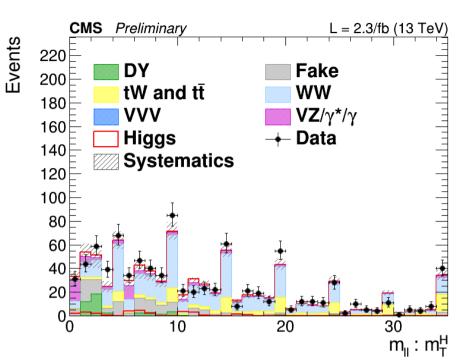
Signal and non-resonant WW

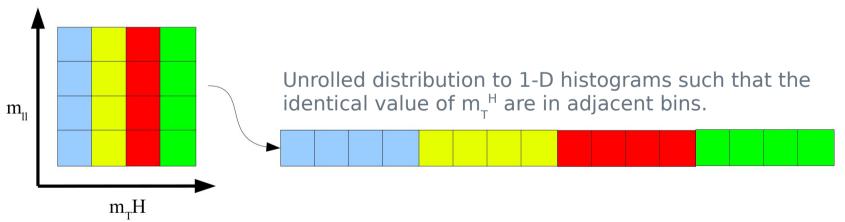
- → Non-resonant WW populates the entire phase space in m, while the Higgs is concentrated at low value.
- \rightarrow The shape is also different in m_{τ}^{H} .

m₊^H 0-jet

Systematic uncertainties

Experimental uncertainties

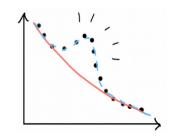

- Luminosity: 2.7% at 13 TeV.
- Single and double trigger acceptance: 2%.
- Lepton recontruction and identification efficiencies: **0.5-5%** for e and **0.5-1.7%** for μ depending on p_{τ} e η .
- Jet energy scale: **1-11**% depending on $p_{\tau} = \eta$.
- MET resolution taken in account by propagating the corresponding uncertainties on lepton and jet.
- Scale factor for b-tag efficiency.


Theoretical uncertainties: assumed to be indipendent in the signal and background production rate.

- ullet PDF and $lpha_{
 m s}$, computed by LHC Higgs cross section working gruop.
- Underlying event uncertainty is estimated by comparing two different UE tunes, the effect is about 5% for UE tuning.
- Categorization on jet multiplicity are 5.6% for 0-jet and 13% 1-jet bin categories:
 Stewart-Tackmann.

Signal extraction

To extract the Higgs boson signal a binned fit is performed using 2-D distributions of $\mathbf{m}_{\ell\ell}$ the and $\mathbf{m}_{\mathsf{T}}^{\mathsf{H}}$ for signal and all backgrounds processes in four categories.



Significance= 0.7σ (expected 2.0σ). Signal strength: $\sigma/\sigma(SM) = 0.3 \pm 0.5$

High mass

A search for spin 0 resonance in the H \rightarrow WW \rightarrow $2\ell 2\nu$ channel is briefly described. The analysis is performed in a range of heavy scalar masses of 200< M_x<1000 GeV. Similar selection criteria of m_H=125 GeV analysis are applied.

Improved transverse mass

The search has been carried out in the 0-jets, 1-jet and VBF categories in order to increase the signal sensitivity to the two different production mechanisms **gg** and **VBF**.

To discriminate signal and background an "**improved**" transverse mass $m_{T,i}$ (or "visible" mass) is defined.

$$m_{\text{T,i}} = \sqrt{(p_{ll} + E_{\text{T}}^{\text{miss}})^2 - (\vec{p}_{ll} + \vec{p}_{\text{T}}^{\text{miss}})^2}$$

1000

m_{Ti} [GeV]

L = 2.3/fb (13 TeV)

Non-prompt

Systematics

 $M_{\rm x} = 800 \, \text{GeV} \, (X100)$

Higgs

600

0-jet

CMSPreliminary

 $M_{\nu} = 400 \text{ GeV } (X10)$

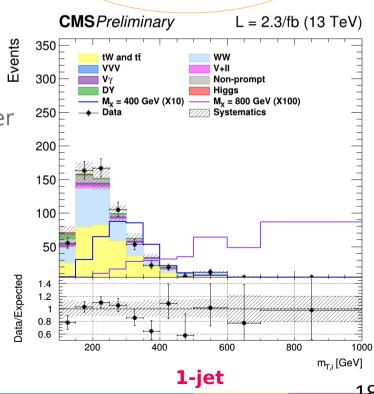
Events

500

300

200

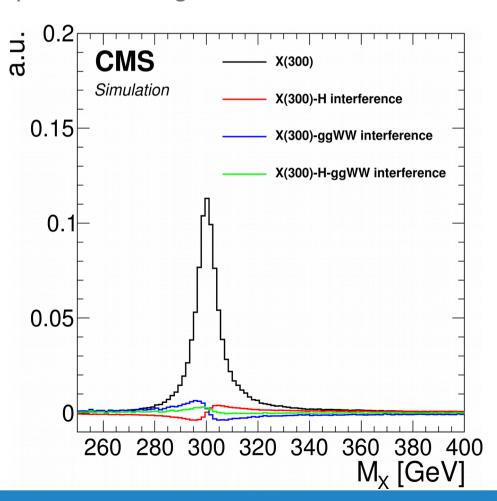
100


1.2

0.6

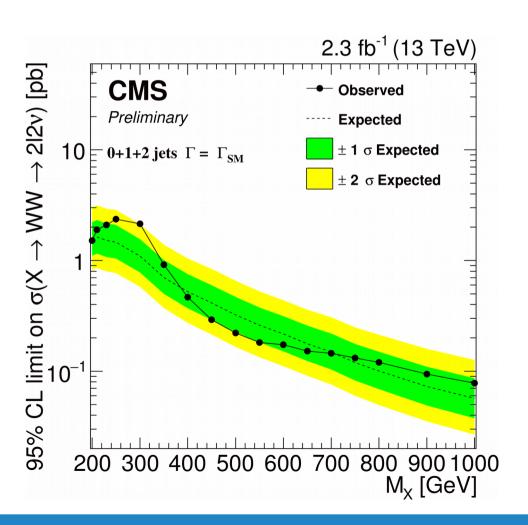
200

Data/Expected


m_{T,i} allows a better distinction among different signal mass hypothesis than m_{_}^H

four-momenta P^μ, E^μ

Singal model and Interference


The signal model includes the terms of interference between the $gg \rightarrow X \rightarrow WW$ and the $gg \rightarrow WW$ processes, as well as the term that arises from the interference with the off-shell tail of the $gg \rightarrow H \rightarrow WW$ contribution. The two interference terms partially **cancel out** and the total contribution is $\sim 1-10\%$ with respect to the signal.

Expected and observed limits

Expected and observed exclusion limit for the combintion of the three jet categories.

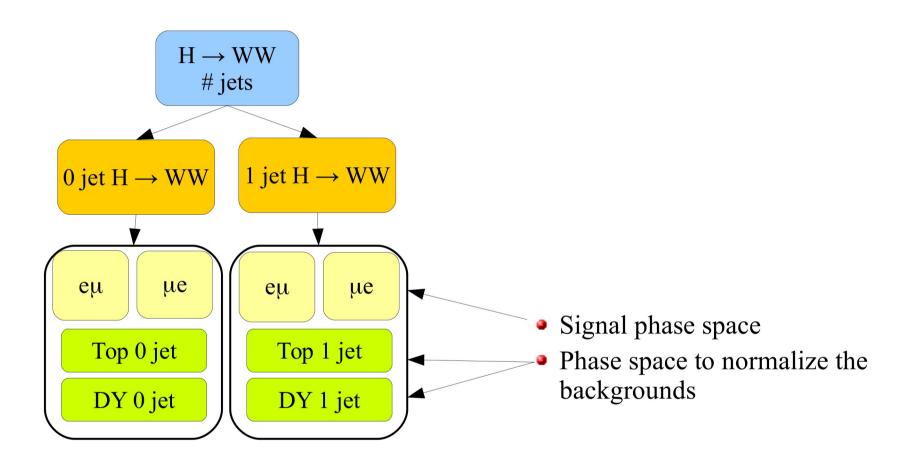
No significant excess with respect to the SM background has been observed.

Conclusion

- **Standard Model Higgs analysis:**
 - Significance=0.7 σ (expected 2.0 σ). Signal strength: $\sigma/\sigma(SM)=0.3\pm0.5$

 - 2016 results coming soon... stay tuned.

- High mass analysis:
 - No significant excess has been observed.
 - We are looking in 2016 data.



Thanks!

backup

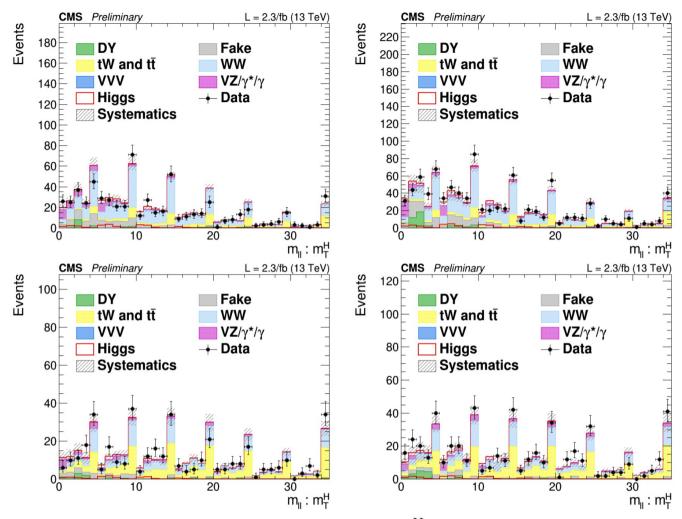


Figure 5: Bi-dimensional distributions of the $m_{\ell\ell}$ and $m_{\rm T}^{\rm H}$ templates in the 0-jet (top) and 1-jet (bottom) and $\mu{\rm e}$ (left) and $e\mu$ (right) categories after the WW level selection. The bi-dimensional templates ranges are $10 < m_{\ell\ell} < 110\,{\rm GeV}$ and $0 < m_{\rm T}^{\rm H} < 200\,{\rm GeV}$ with 5 bins in $m_{\ell\ell}$ and 10 bins in $m_{\rm T}^{\rm H}$. The distributions are unrolled to one dimensional histograms such that that identical values of $m_{\rm T}^{\rm H}$ are in adjacent bins. The background and signal contributions are normalized according to their pre-fit values except that scale factors estimated from data are applied to the jet induced, the Drell-Yan, and top backgrounds.

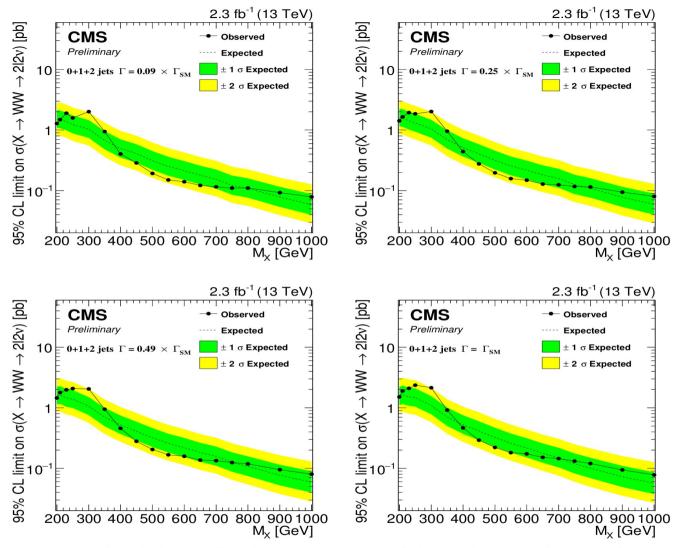
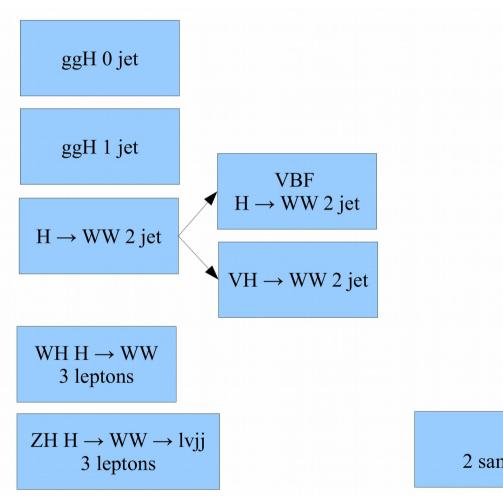



Figure 5: Expected and observed exclusion limits at 95% CL on the sum of ggH and VBF cross sections times branching fraction for the combination of the three jet categories as a function of the resonance mass. The black dotted line corresponds to the central value while the yellow and green bands represent the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties respectively. Limits are shown for four hypothesis of the signal width.

7-8 TeV results

 $ttH H \rightarrow WW$ 2 same-sign, 3 leptons, 4 leptons

7-8 TeV results

	Significance Obs Exp		σ/σ _{SM}	
combination	4.3σ	5.8σ	$0.72^{+0.20}_{-0.18}$	
eμ alone 0/1 jet	4.0σ	5.2σ	0.76 ± 0.21	

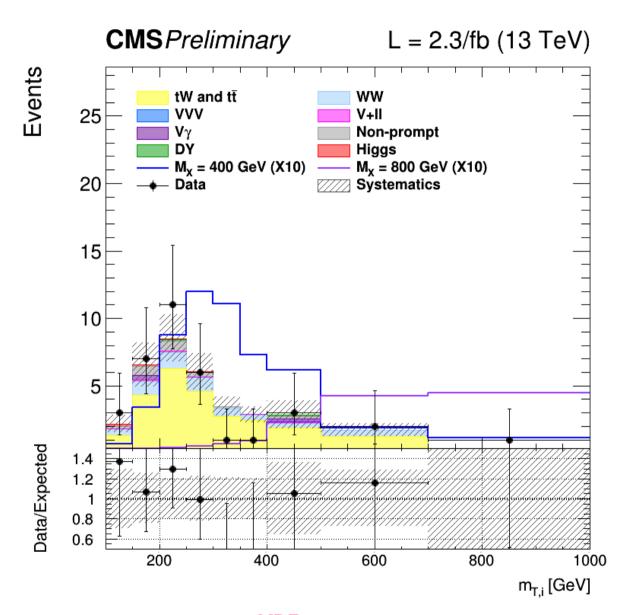


Table 1: Observed p-value and corresponding significance (set to 0 in case of underfluctuations of the observed number of events) for the combination of the three jet categories for different resonance masses. Different values of the signal width are shown.

Mass [GeV]	$\Gamma = 0.09 \times \Gamma_{SM}$	$\Gamma = 0.25 \times \Gamma_{SM}$	$\Gamma = 0.49 \times \Gamma_{SM}$	$\Gamma = \Gamma_{SM}$
	p-value (signif.)	p-value (signif.)	p-value (signif.)	p-value (signif.)
200	0.50(0)	0.50(0)	0.50 (0)	0.56 (0)
210	0.58 (0)	0.45(0.1)	0.35 (0.4)	0.24(0.7)
230	0.21 (0.8)	0.22(0.8)	0.23 (0.7)	0.26 (0.6)
250	0.29 (0.5)	0.20(0.8)	0.15 (1.0)	0.12 (1.2)
300	0.014 (2.2)	0.015 (2.2)	0.016 (2.1)	0.018 (2.1)
350	0.16 (1.0)	0.17(1.0)	0.18 (0.9)	0.23 (0.7)
400	0.50(0)	0.49(0)	0.49 (0)	0.57(0)
450	0.51 (0)	0.50(0)	0.50(0)	0.52(0)
500	0.50(0)	0.51(0)	0.50(0)	0.52(0)
550	0.50(0)	0.51(0)	0.51 (0)	0.51 (0)
600	0.50(0)	0.50(0)	0.51 (0)	0.51 (0)
650	0.50(0)	0.50(0)	0.54(0)	0.50(0)
700	0.50(0)	0.50(0)	0.50(0)	0.50(0)
750	0.50(0)	0.54(0)	0.50(0)	0.40(0.3)
800	0.50(0)	0.55(0)	0.39 (0.3)	0.29 (0.6)
900	0.29 (0.6)	0.27(0.6)	0.24(0.7)	0.22(0.8)
1000	0.18 (0.9)	0.18 (0.9)	0.18 (0.9)	0.18 (0.9)