Latest CMS results on Higgs boson production in association with top quarks

g

Q

Thomas Strebler

Laboratoire Leprince-Ringuet Ecole Polytechnique / CNRS-IN2P3

On behalf of the CMS collaboration

Lake Louise Winter Institute 2017 February 20th, 2017

Introduction

- In SM, top-Higgs coupling (Y_t) **very large wrt other fermions:** good opportunity to study Higgs Yukawa couplings to fermions
- Access to Y_t with **ggF** + $H \rightarrow \gamma \gamma$ decay
- Only model-dependent constraints on Y_t, assuming no BSM particles in the loop

- ttH => direct probe to study Yt
- Large cross-section boost from 8 to 13 TeV (x4)
 => expected to be observed by the end of LHC Run 2
- Challenging because complex final state
 => use of MultiVariate Analysis (MVA)
 discriminants for signal extraction

Previous CMS results

- ttH searches in CMS covers all main Higgs boson decay modes:
 - H**→**γγ
 - H→bb
 - H \rightarrow WW/ZZ/ $\tau\tau$ (multilepton)
- Sensitivity to processes with top quarks enhanced with jet multiplicity + b-tagging

 Results presented here correspond to updates of all those analyses with 12.9/fb of 13 TeV collision data collected in 2016

ttH H $\rightarrow \gamma \gamma$ CMS PAS HIG-16-020

- Targets H→γγ decay mode: limited statistics but distinctive signature + very pure channel
- Two ttH sensitive channels, part of main $H \rightarrow \gamma \gamma$ analysis
 - **ttH leptonic**: $2\gamma + \ge 1$ lepton $+ \ge 2$ jets (≥ 1 b-tag)
 - **ttH hadronic**: $2\gamma + \ge 5$ jets (≥ 1 b-tag)
- Main background tt+genuine/fakes γ: estimated from fit of m(γγ) distribution
- Diphoton mass $m(\gamma\gamma)$ used for signal extraction
- Best fit value $\hat{\mu}_{obs}(ttH) = 1.91^{+1.5}_{-1.2}$

- H→bb decay mode: highest BR but:
 - large b-jet multiplicity
 - irreducible ttbb background
- Update wrt 2015 analysis:

MC signal + ttbar background evaluated with **new CMS tune CUETP8M2T4 for Powheg Box v2 + Pythia 8** (α_{ISR} =0.118 and h_{damp} =272.2)

=> better data/MC agreement for jet multiplicity

- Two channels considered:
 - lepton+jets: 1 lepton $+ \ge 4$ jets
 - dilepton: 2 OS leptons $+ \ge 2$ jets
- Categories based on jet multiplicity + b-tagging

Example:

BDT input in lepton+jets \geq 6 jets, \geq 4 b-tags

- best Higgs mass
- M₂(tag,tag) closest to 125 GeV
- M(jets,lepton,MET)
- 4th and 5th highest b-tag discriminator score
- Σp_T(jets,lepton,MET)

- Further categorization based on Boosted Decision Trees (BDTs): ttH(bb) signal vs inclusive ttbar background
- Subcategories for low/high BDT score

- Matrix Element Method (MEM) used to compute per-event signal/background probability: hard scattering ME + detector transfer functions
- Used to define MEM discriminant optimized to separate ttH(bb) signal from irreducible ttbb background

$$P_{\rm s/b} = \frac{w(\vec{y}|t\bar{t}H)}{w(\vec{y}|t\bar{t}H) + k_{\rm s/b}w(\vec{y}|t\bar{t}+b\overline{b})}$$

• Fit MEM discriminant for signal extraction in each BDT subcategories

µ<1.5 (1.7) at 95% CL

- Multilepton final states from H \rightarrow WW/ZZ/ $\tau\tau$ decays
- Two main channels:

- Further categorization based on lepton flavor, lepton charge, b-tagging, presence of hadronically-decaying τ
- Main sources of background:
 - irreducible: ttV (from MC), di-boson (normalization from data)
 - reducible: non-prompt leptons and charge mis-ID (data-driven)

- Leptons selected with MVA trained to discriminate prompt leptons (from W, Z or τ decays) from non-prompt leptons (from b-jets and mis-identified hadrons)
- Inputs:
 - isolation
 - vertex
 - lepton ID
 - jet variables
- Performance validated in data control regions (CR)
- Residual background with non-prompt evaluated using tight-to-loose fake rate method

Main systematics:

- lepton selection efficiency
- fake rate measurement used for background estimation

- Signal extraction based on 2 BDTs trained to discriminate ttH / ttV and ttH / tt Inputs: jet multiplicity, lepton/jet angular separation, MET, lepton p_T
- New for 2016 analysis: in 3l category, MEM weights for ttH and ttV hypotheses used as additional inputs

Results from early 2016 dataset (12.9/fb) and from the combination with the ttH multilepton 2015 result

Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3.9	$1.4^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3.4	$1.3^{+0.6}_{-0.4}$	$2.0^{+0.8} {-0.7}$

Conclusion

- Latest CMS results on the associated production of the Higgs boson with top quarks have been presented
- Allows to probe top-Higgs coupling at tree level
- Challenging final states with large multiplicity of jets and leptons but benefits from advanced methods used to improve the sensitivity (BDT, MEM)

$$\hat{\mu}_{obs}(ttH) = 1.91^{+1.5}_{-1.2}$$

ttH, H→bb $\hat{\mu}_{obs}(ttH) = -0.19^{+0.80}_{-0.81}$

- ttH multilepton (2015+2016 combination) $\hat{\mu}_{obs}(ttH) = 2.0^{+0.8}_{-0.7}$
- Results compatible both with SM or possible
 ttH excess
- Full 2016 dataset currently being analysed: stay tuned for upcoming ttH results

Back-up

ttH $H \rightarrow \gamma \gamma$ **CMS PAS HIG**-16-020

ttH leptonic tag selections

- leading photon $p_{\rm T} > m_{\gamma\gamma}/2$;
- sub-leading photon $p_{\rm T} > m_{\gamma\gamma}/4$;
- at least one lepton with $p_T > 20$ GeV: electrons must be within the ECAL fiducial region and pass the recommended criteria for loose requirements on the same observables as described in [27]. In addition the electron should satisfy $|m(e, \gamma) m_Z| > 10$ GeV, where m_Z refers to the Z boson mass. Muons are required to have $|\eta| < 2.4$ and to pass a tight selection based on the quality of the track, the number of hits in the tracker and muon system, and the longitudinal and transverse impact parameters of the track with respect to the muon vertex; additionally, it has to satisfy a requirement on the relative isolation with pileup correction, based on the transverse momentum of the charged hadrons, transverse energy of the neutral hadrons and photons in a cone of R = 0.4 around the muon;
- all selected leptons (ℓ) are required to have $\Delta R(\ell, \gamma) > 0.4$;
- at least two jets in the event with $p_T > 25$ GeV, $|\eta| < 2.4$, and $\Delta R(\text{jet}, \gamma) > 0.4$ and $\Delta R(\text{jet}, \ell) > 0.4$;
- at least one of the jets in the event has to be identified as b jet according to the CSV tagger medium requirement [28].
- BDT_{γγ} output > −0.4. Too few events are available to optimise this selection for signifiance, so this choice is made simply to remove most of the events with low BDT_{γγ} score.

ttH $H \rightarrow \gamma \gamma$ <u>CMS PAS HIG-16-020</u>

- ttH hadronic tag selections
 - leading photon $p_{\rm T} > m_{\gamma\gamma}/2;$
 - sub-leading photon $p_{\rm T} > m_{\gamma\gamma}/4$;
 - no leptons defined according to the leptonic tag;
 - at least five jets in the event with $p_{\rm T} > 25$ GeV and $|\eta| < 2.4$;
 - at least one of the jets in the event has to be identified as a b-jet according to the CSV tagger medium requirement [28];
 - a minimum value of BDT_{$\gamma\gamma$} output. The value is a compromise between significance optimisation and the need of a minimum number of events to fit the background.

Matrix Element Method

CMS PAS HIG-16-038 CMS PAS HIG-16-022

- Used in ttH H \rightarrow bb and multilepton analyses
- Event weight computed for hypothesis Ω (Ω=ttH, ttbb, ttV...), using observables y as inputs (lepton + jet 4-momenta, MET) and integrating over unmeasured or poorly measured quantities x (neutrino 4-momenta, quark energies...)

Jet multiplicity + b-tagged jets multiplicity

Jet multiplicity + b-tagged jets multiplicity

Categories based on jet multiplicity + b-tagging

• BDT input variables

Event variable	Description
Object and event kinematics	
$\langle \Delta R_{\rm tag,tag} \rangle$	Average ΔR between b-tagged jets
$\sum p_{T \text{jets,leptons}}$	Sum of the p_T of all jets and leptons
$ au_{ ext{jet,jet}}^{ ext{max mass}}$	Twist angle between jet pair
min $\Delta R_{\text{tag,tag}}$	ΔR between the two closest b-tagged jets
$\max \Delta \eta_{ ext{tag,tag}}$	$\Delta \eta$ between the two furthest b-tagged jets
$M_{ m jet,jet}^{ m min\Delta R}$	Invariant mass of jet pair with minimum ΔR
M ^{jj} _{higgs-like}	Invariant mass of a jet pair ordered in closeness to the Higgs mass
$M_{ m tag,tag}^{ m min\Delta R}$	Mass of b-tagged jet pair with minimum ΔR
$p_{T ext{ tag, tag}}^{\min \Delta R}$	Sum of the p_T of b-tagged jet pair with minimum ΔR
Centrality (tags)	Ratio of the sum of the transverse momentum of all b- tagged jets and the sum of the energy of all b-tagged jets
Centrality (jets, leptons)	Ratio of the sum of the transverse momentum of all jets and leptons, and the sum of the energy of all jets and leptons

BDT input variables

H_T	Scalar sum of transverse momentum for all jets
min $\Delta R_{\text{jet,jet}}$	ΔR between the two closest jets
median M _{jet,jet}	Median invariant mass of all combinations of jet pairs
M ^{max} mass M ^{tag,tag}	Mass for b-tagged jet pair with maximum invariant mass combination
$\langle \Delta R_{jet,tag} \rangle$	Average ΔR between jets (with at least one b-tagged jet)
$p_{T jet,tag}^{\min\Delta R}$	Sum of the p_T of jet pair with minimum ΔR (with at least one b-tagged jet)
$\tau_{\text{jet,tag}}^{\max}$	Twist angle between jet pair (with at least one b-tagged jet)
max p _T m _{jet,jet,jet}	Invariant mass of the 3-jet system with the largest transverse momentum.
$M_{ m higgs-like}^{ m bj}$	Invariant mass of a jet pair (with at least one b-tagged jet) ordered in closeness to the Higgs mass
CSVv2 b-tag	
$\langle d angle_{ ext{tagged}/ ext{untagged}}$	Average CSVv2 b-tag discriminant value for b-tagged/un- b-tagged jets
Event shape	
H_0, H_1, H_2, H_3, H_4	Fox-Wolfram moments [?]
C(jets)	$3 \left(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3\right) [?]$

BDT input variables

Dilepton channel

3 jets, 3 tags	\geq 4 jets, 3 tags	\geq 4 jets, \geq 4 tags
$\langle d \rangle_{\rm tagged}$	Centrality(jets & leptons)	Centrality(jets & leptons)
$H_1(jets)$	C(jets)	Centrality(tags)
$M_{ m higgs-like}^{ m bj}$	$H_2(tags)$	H_T^{tags}
$M_{ m tag,tag}^{ m maxmass}$	$M_{ m higgs-like}^{ m jj}$	$M_{ m higgs-like}^{ m jj}$
min $\Delta R_{tag,tag}$	$M_{ m jet, jet, jet}^{{ m max} p_T}$	min $\Delta R_{\text{jet,jet}}$
$\max \Delta \eta_{\text{jet,jet}}$	$M_{ m tag,tag}^{ m min} \Delta R$	$M_{jet,tag}^{\min\Delta R}$
min $\Delta R_{\rm jet, jet}$	min $\Delta R_{\mathrm{tag,tag}}$	$M_{ m tag,tag}^{ m max\ mass}$
$\sum p_{T \text{jets,leptons}}$	$\max \Delta \eta_{ ext{tag,tag}}$	$M_{ ext{tag,tag}}^{ ext{min}\Delta R}$
$H_4/H_0(tags)$	$ au_{ ext{tag,tag}}^{ ext{max}}$	$\max \Delta \eta_{ ext{jet,jet}}$
		$\max \Delta \eta_{ ext{tag,tag}}$
		median M _{jet,jet}

4 jets, 4 tags	5 jets, \geq 4 tags
$\sum p_{\rm T}$ (jets, lepton, MET)	avg. $\Delta \eta$ (jet, jet)
avg. CSVv2 of b-tagged jets	HT
aplanarity	avg. CSVv2 of b-tagged jets
H_3	$M_2(tag, tag)$ closest to 125
$(\Sigma p_{\rm T}({\rm jet}))/(\Sigma E({\rm jet}))$	M3
M_2 of min $\Delta R(tag, tag)$	$\sum p_{\mathrm{T}}(\mathrm{jets}, \mathrm{lepton}, \mathrm{MET})$
	M_2 of min $\Delta R(tag, tag)$
	aplanarity
	avg. $\Delta R(tag, tag)$
\geq 6 jets, 3 tags	\geq 6 jets, \geq 4 tags
aplanarity	best Higgs mass
$\sqrt{\Delta\eta(\mathrm{t^{lep},bb}) imes\Delta\eta(\mathrm{t^{had},bb})}$	$M_2(tag, tag)$ closest to 125
$(\Sigma p_{\rm T}({\rm jet}))/(\Sigma E({\rm jet}))$	M(jets, lepton, MET)
min $\Delta R(tag, tag)$	4th highest CSVv2
2nd moment of b-tagged jets' CSVv2	$\sum p_{\rm T}$ (jets, lepton, MET)
$\sum p_{\mathrm{T}}$ (jets, lepton, MET)	5th highest CSVv2
b-tagging likelihood ratio	

Lepton+jets channel

Particle Swarm

See: <u>Particle swarm optimization</u>, J. Kennedy, R. Eberhart Proceedings of the IEEE International Conference on Neural Networks, 1995.

- Optimization algorithm
- Different BDT setting (i.e. tree structure and variables) form the search-space
- A specific setting corresponds to one point in this search space
- Algorithm:
 - Create swarm of candidate BDTs
 - Each BDT is initialized with a random set of input variables and position in parameterspace
 - Do N iterations
 - Repeatedly train/test at current position
 - Vary input variables to maximize ROC curve
 - Then the BDTs move to new positions, based on their own and swarms best previous positions

Systematics uncertainties

Source	Туре	Remarks
Luminosity	rate	Signal and all backgrounds
Lepton ID/Iso	shape	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
Jet energy scale	shape	Signal and all backgrounds
Jet energy resolution	shape	Signal and all backgrounds
b-tag HF fraction	shape	Signal and all backgrounds
b-tag HF stats (linear)	shape	Signal and all backgrounds
b-tag HF stats (quadratic)	shape	Signal and all backgrounds
b-tag LF fraction	shape	Signal and all backgrounds
b-tag LF stats (linear)	shape	Signal and all backgrounds
b-tag LF stats (quadratic)	shape	Signal and all backgrounds
b-tag charm (linear)	shape	Signal and all backgrounds
b-tag charm (quadratic)	shape	Signal and all backgrounds

Systematics uncertainties

rate	Scale uncertainty of NLO ttH prediction
rate	Scale uncertainty of NLO tr prediction
rate	Additional 50% rate uncertainty of tt+HF predic-
	tions
rate	Scale uncertainty of NLO single t prediction
rate	Scale uncertainty of NNLO W and Z prediction
rate	Scale uncertainty of NLO diboson prediction
rate	PDF uncertainty for gg initiated processes except
	tīH
rate	PDF uncertainty for ttH
rate	PDF uncertainty of qq initiated processes (tt W, W,
	Z)
rate	PDF uncertainty of qg initiated processes (single t)
shape	Renormalization and factorization scale uncertain-
	ties of the tt ME generator, independent for addi-
	tional jet flavors
rate	Renormalization and factorization scale uncertain-
	ties of the parton shower (for tt events), indepen-
	dent for additional jet flavors
shape	statistical uncertainty of the signal and background
	prediction due to the limited sample size
	rate rate rate rate rate rate rate rate

• Specific effect of systematics uncertainties in ≥ 6 jets, 3 b-tag category

Process	tī rate up/down [%]	ttH rate up/down [%]
Jet energy scale	+12.6/-11.8	+8.4/-8.0
Jet energy resolution	+0.2 / -0.3	-0.0/-0.1
Pile-up	+0.1 / -0.1	-0.2/+0.1
Electron efficiency	+0.5 / -0.5	+0.5/-0.5
Muon efficiency	+0.4/-0.4	+0.4/-0.4
Electron trigger efficiency	+1.2/-1.2	+1.3/-1.3
Muon trigger efficiency	+0.8 / -0.8	+0.9/-0.9
b-Tag HF contamination	-9.4/+9.8	-2.6/+2.8
b-Tag HF stats (linear)	-3.1/+3.3	-2.5/+2.7
b-Tag HF stats (quadratic)	+2.6/-2.4	+2.4/-2.2
b-Tag LF contamination	+7.1/-5.2	+5.8/-4.5
b-Tag LF stats (linear)	-2.0/+4.4	+0.5/+1.5
b-Tag LF stats (quadratic)	+2.1/+0.2	+1.5/+0.5
b-Tag charm Uncertainty (linear)	-11.1/+14.9	-3.1/+4.1
b-Tag charm Uncertainty (quadratic)	+0.5/-0.5	-0.0/+0.0
Q^2 scale (tt+LF)	-6.2/+7.5	_
Q^2 scale (tt+b)	-1.7/+2.0	_
Q^2 scale (tt+2b)	-1.1/+1.4	—
Q^2 scale (tt+bb)	-2.0/+2.5	_
Q^2 scale (t \bar{t} +c \bar{c})	-4.3/+5.4	—
PS scale (tt+LF)	+4.8 / -9.0	—
PS scale (tī+b)	-0.9/+0.7	_
PS scale (tī+2b)	-0.8/+0.9	—
PS scale (tŧ+bb)	-1.5/+2.7	_
PS scale (tī+cc)	-3.9/+3.0	_

• Final discriminant in lepton+jets channel, \geq 6 jets, \geq 4 b-tag high-BDT category

Final discriminant in dilepton channel, ≥ 4 jets, ≥ 4 b-tag high-BDT category

 Categorization based on lepton flavor, lepton charge, b-tagging, presence of hadronicallydecaying τ

T. Strebler – CMS ttH results – Lake Louise 2017

BDTs in 2ISS channel

BDTs in 3I channel

Unfolded 2D BDTs distribution for used for signal extraction

Systematics with largest effect on the fitted signal strength

Best fit signal strength

ATLAS results on ttH ATLAS-CONF-2016-068

