

Higgs couplings to bosons and fermions Giacomo Ortona (LLR) for the CMS collaboration

Co-funded by the Horizon 2020 Framework Programme of the European Union

Outline

Introduction

Higgs coupling to bosons

- •HZZ
- •HWW
- •Ηγγ

Higgs coupling to fermions

- •Hbb
- •Hττ
- Ημμ

Combination of Higgs couplings

Prospects and Summary

Not in this talk:

Higgs trilinear couplingSee talk by O. Bondu

ttH productionSee talk by T. Strebler

Motivation

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

The evidence for the existence of H(125) is well beyond any doubt

- Mass a bit on the high side, but well compatible
- Spin and parity: 0+
- Branching ratio, couplings are (so far) compatible with H.
- If NP is coupled with the Higgs sector→modification of the couplings to SM particles.

Giacomo Ortona

K-framework and PO

Couplings, к

Parameters scale cross sections and partial widths relative to SM

$$\kappa_j^2 = \sigma_j / \sigma_j^{\rm SM} \quad \kappa_j^2 = \Gamma_j / \Gamma_j^{\rm SM}$$

$$\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_\mathrm{H}},$$

Total width determined as

$$\Gamma_{\rm H} = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - {\rm BR}_{\rm BSM}}$$

Where

$$\kappa_{H}^{2} = \sum_{j} \mathrm{BR}_{\mathrm{SM}}^{j} \kappa_{j}^{2}$$

At first, signal strengths μ (ratio of observed cross-section to SM predictions)

- Good to verify H(125) properties and to check compatibility with SM
- Not ideal parametrization when introducing NP

Second step, K-framework:

- Disentangles production and decay mechanisms. Notation k_f = {k_t,k_b,k_t}; k_V = {k_W,k_Z}
- Effective coupling modifiers for processes with loops (kg, ky, kH...)
- Also possible to describe as coupling modifier ratios $\lambda_{ij} = \kappa_i / \kappa_j$
- Production processes: ggF, VBF, WH, ZH, ttH
- Decay channels: HZZ,WW, $\gamma\gamma$, $\tau\tau$,bb, $\mu\mu$

Next step: PseudoObservables (not for this talk)

H coupling to bosons: WW More details in Lorenzo's talk

- Good S/B ratio, with relatively large background
- v in the final state. Worst resolution wrt ZZ
- Analysis on 2D templates on (m_{II},m_T^H) Run1:
- 2-3 high-p_T isolated leptons (l=e,μ)+ MET, with categorization based on jet multiplicity (0,≥1) and lepton flavours (ee,eµ,µµ)

CMS Preliminary

- Very clean channel for discovery and signal strength measurements
- Search strategy: peak over (abundant) and regular background
- Vertex+photonID+kinematic BDT to select and classify the events
- Indirect probe of coupling through production loops
- Categorisation:

6

- 4 untagged categories with different relative contributions of VH/ggH
- 2 ttH-tagged categories (leptonic/hadronic) top decay)
- 2 VBF-tagged categories

Events/0.02 •Data Simulation background SM H→γγ, m₁=125 GeV jet jet ggH VBF y jet VH MC stat. uncert. ttH 10⁴ 10³ 10² 10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 Transformed BD rejected Untagged 2 Untagged 0 Untagged 3 Untagged

12.9 fb⁻¹ (13TeV)

H coupling to bosons: γγ

Signal strengths are compatible with SM expectations. In run1, small upward fluctuation in ttH (1 σ in $\gamma\gamma$, 2 σ globally). Not able yet to confirm it, but higher luminosity results are on the way

$H \rightarrow ZZ \rightarrow 4I$

H coupling to bosons: ZZ

Signal strengths in run2 are consistent with SM expectations

ttH production is being reported for the first time by CMS in the ZZ channel

8 CMS Preliminary

и_{vвғ,vн}

7

6

5

4

3

2

1⊨

0^L 0

1

H coupling to fermions: bb

u

∆ In L

2

 κ_{V}

H coupling to fermions: $\tau\tau$

J. High Energy Phys. 05 (2014) 104

Most sensitive fermionic decay channel

Final state events organised in channels according to $\boldsymbol{\tau}$ decay

Jet-tagged and VH-tagged categories to separate different final states

Likelihood based algorithm to reconstruct $\boldsymbol{\tau}$ mass

Cut on transverse mass m_T to improve S/B

H coupling to fermions: muons

Difficult measurement, very small branching fraction $B(H \rightarrow \mu \mu)=2.2 \cdot 10^{-4}$ (and even smaller to electrons).

- Search for bumps in the invariant mass spectra of isolated OS lepton pairs
- Events categorised according to the number of jets (<2,≥2)
- Not sensitive to the SM yet. Run1 excludes $\sim 7 x \sigma_{SM}$ Useful channel to test for H couplings scaling and BSM physics.

Also possible to probe LFV coupling, in H→II decays In Run1:

- BR(H→μτ)<1.51%
- BR(H→eτ)<0.69%

BR(H→eµ)<0.035%

2015 sensitivity already close

I to run1 BR(H→ μ τ)<1.2%

Giacomo Ortona

Combination of couplings (Run1)

The big picture

- k-framework scaling model is very effective in predicting the value of the couplings
- couplings • Still room for deviations, especially in the ເ
- But room for BSM is closing down (B_{BSM}<0.34)

Very difficult to probe this scaling beyond current range at LHC, but precise measurements are arriving from Run2 to reduce uncertainties

Prospects

Giacomo Ortona

Conclusions

The measurement of the couplings of the Higgs boson to SM particles is one of our best ⁺ handles to explore BSM physics

CMS is providing an extensive measurement of the couplings covering a wide range of production (ggH, VBF, VH, ttH) and decay (ZZ, $\gamma\gamma$, WW, $\tau\tau$, II, bb) modes

The combination of (Run1) results with ATLAS showed very good agreement between the experiments and with the SM predictions, with fermionic/bosonic scaling holding up nicely

The BR for BSM physics is getting narrower (<0.34 with Run1 results)

New results are coming soon for Run2 results at 13TeV, and prospects for our capabilities to precisely measure the H couplings at HL-LHC are looking good

Run1 signal strength results

- Small (~2σ) overfluctuation in ttH
- Not large per se, but we are starting to see it in many channels across CMS and ATLAS
- top-Yukawa coupling is the strongest H coupling, if confirmed it would be an important hint of modifications in the SM loops
- Let's wait and see for confirmations from Run2

Higgs production at the LHC

- Higgs production at the LHC dominated by gluon fusion
- At 13TeV, VBF and ttH accessible, providing informations on VH, H-t coupling

HVV anomalous couplings

ZZ: event distribution by category

Only 1 event observed (4.9 expected) in the peak region 118<m_{4l}<130GeV for VBF-1j category

It is a low-KD 4e event

Mass and width

12.9 fb⁻¹ (13 TeV)

CMS Preliminary

Run1 results are essentially confirmed

0^L 0

H coupling to fermions: $\tau\tau$ Run2

23