Recents Results from ATLAS in Beauty and Charm Physics

Lake Louise Winter Institute 24. 02. 2017

Tomas Jakoubek

on behalf of the ATLAS Collaboration Czech Academy of Sciences | tomas.jakoubek@cern.ch

Outline

- ATLAS [1] has a wide program of studies in heavy flavour physics: from QCD tests performed on production cross section and properties of states containing heavy quarks, to searches for new physics in EW processes
- In this talk:
 - Differential production cross section of J/ψ pairs (separating associated production and multi-parton scattering) [2]
 - Differential production cross section for X(3872), observed in the decay to J/ψπ⁺π⁻ [3]

Measurement of the width difference in the B⁰-B

 ⁰ system (via the comparison of the decay time distributions to CP and flavour eigenstates) [4]

Recent results and Run 2 expectations for FCNC process in the B_s^0 systems: rare decays to muon pairs [5] and *CP* violating phase ϕ_s in the decay to $J/\psi\phi$ [6]

The ATLAS Experiment

- **Muon Spectrometer**: triggering $|\eta| < 2.4$ and precision tracking $|\eta| < 2.7$
- Inner Detector: Silicon Pixels and Strips with Transition Radiation Tracker, $p_{\rm T} > 0.4$ GeV and $|\eta| < 2.5$
 - **NEW for Run 2**: "Insertable B-Layer" (IBL) additional inner-most pixel layer (r = 33 mm) and lower x/X_0 beam pipe
 - **Resolution in** $m(\mu^+\mu^-)$: Around 50 MeV at J/ψ , 150 MeV at $\Upsilon(nS)$
 - **Resolution in** *b*-hadron proper decay time: \sim 100 fs (30 % improvement with IBL

- Test of non-perturbative QCD
- Di- J/ψ events can be produced from
 - single gg collision via Single Parton Scattering (SPS) or
 - two independent parton-parton scatters Double Parton Scattering (DPS)
- 2012 *pp* data: 11.4 fb⁻¹, $\sqrt{s} = 8$ TeV [2]
- Differential cross-section as a function of the sub-leading J/ψ $p_{\rm T}$, di- J/ψ $p_{\rm T}$, and di- J/ψ mass
- Measured in two rapidity regions of the sub-leading J/ψ :

$$|y(J/\psi_2)| < 1.05$$
 and $1.05 < |y(J/\psi_2)| < 2.1$

Assuming unpolarised J/ψ mesons

Total cross-section over the full fiducial J/ψ rapidity:

 $\sigma_{ t total}(pp
ightarrow J/\psi J/\psi + X) = 160 \pm 12 \ (stat) \pm 14 \ (syst) \pm 2 \ (BF) \pm 3 \ (lumi) \ pb$

• DPS/SPS weights as a function of $\Delta \phi$ and Δy :

$$f_{\text{DPS}} = 9.2 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (syst)}\%$$

Effective cross-section of DPS:

 $\sigma_{\rm eff}=6.3\pm1.6~{\rm (stat)}\pm1.0~{\rm (syst)}\pm0.1~{\rm (BF)}\pm0.1~{\rm (lumi)}$ mb

LLW| 2017

Production of $\psi(2S)$ and X(3872)in the Decay to $J/\psi(\mu^+\mu^-)\pi^+\pi^-$

- X(3872) first discovered by Belle 2003 in $B^{\pm} \to K^{\pm} J/\psi \pi^{+} \pi^{-}$, soon confirmed by other experiments
- Current world average (3871.69 \pm 0.17) MeV [7] places X(3872) mass very close to the $D^0 \bar{D}^{*0}$ threshold
- The structure of the resonance remains unclear: tetraquark, molecular, and mixed models
- Measuring X(3872) and the well-studied ψ(2S) in the same analysis and in the same final state J/ψ(μ⁺μ⁻)π⁺π⁻ helps reduce systematics for various ratios and comparisons

• 2012 *pp* data: 11.4 fb⁻¹,
$$\sqrt{s} = 8$$
 TeV [3]

$$|y| < 0.75$$
, 10 GeV $< p_{\rm T} < 70$ GeV

Production of $\psi(2S)$ and X(3872)in the Decay to $J/\psi(\mu^+\mu^-)\pi^+\pi^-$

- The $\psi(2S)$ cross-section measurements: good consistency with NLO NRQCD for prompt and FONLL for non-prompt production
- Prompt X(3872) cross-section measurement: good agreement with the NLO NRQCD model, which considers X(3872) to be a mixture of $\chi_{c1}(2P)$ and a $D^0 \bar{D}^{*0}$ molecular state, with production dominated by $\chi_{c1}(2P)$
- FONLL overestimate the non-prompt production of X(3872), especially at large p_T
- Branching fraction ratios $R_B = \frac{\mathcal{B}(B \to X(3872) + any)\mathcal{B}(X(3872 \to J/\psi\pi^+\pi^-))}{\mathcal{B}(B \to \psi(2S) + any)\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)}$

 $R_B^{1\text{L}} = (3.95 \pm 0.32(\text{stat}) \pm 0.08(\text{syst})) \times 10^{-2}, R_B^{2\text{L}} = (3.57 \pm 0.33(\text{stat}) \pm 0.11(\text{syst})) \times 10^{-2}$

- Value of $\frac{\Delta\Gamma_d}{\Gamma_d}$ is reliably predicted in the SM [8]: (0.42 ± 0.08) ×10^{-2}
- Relatively large variation of ΔΓ_d due to a possible new physics contribution would not contradict other existing SM results
- Current¹ experimental **uncertainty** on $\Delta\Gamma_d$ is much larger than the SM central value: $\frac{\Delta\Gamma_d}{\Gamma_d} = (0.1 \pm 1.0) \times 10^{-2}$ [9]
- 2011+2012 *pp* data: 4.9 fb⁻¹, $\sqrt{s} = 7$ TeV, 20.3 fb⁻¹, $\sqrt{s} = 8$ TeV [4]
- $\frac{\Delta\Gamma_d}{\Gamma_d}$ determined from ratio of proper decay time distributions of $B^0_d \rightarrow J/\psi K^0_S$ and $B^0_d \rightarrow J/\psi K^{*0}$
- B_d^0 production asymmetry A_P measured from a charge asymmetry A_{obs} , from a difference between $B_d^0 \rightarrow J/\psi K^{*0}$ and $\bar{B}_d^0 \rightarrow J/\psi \bar{K}^{*0}$ decays as a function proper decay lengths L_{prop}^B

¹Before the ATLAS measurement

- ATLAS result is consistent with other measurements of $\frac{\Delta\Gamma_d}{\Gamma_d}$ and with the SM prediction
- Currently it is the most precise single measurement

$$\begin{array}{lll} \textbf{ATLAS:} & (-0.1\pm1.1(\text{stat})\pm0.9(\text{syst}))\times10^{-2} \\ \text{LHCb:} & (-4.4\pm2.5(\text{stat})\pm1.1(\text{syst}))\times10^{-2} \\ \text{Belle:} & (1.7\pm1.8(\text{stat})\pm1.1(\text{syst}))\times10^{-2} \\ \text{BaBar:} & (0.8\pm3.7(\text{stat})\pm1.8(\text{syst}))\times10^{-2} \\ \text{SM:} & (0.42\pm0.08)\times10^{-2} \end{array}$$

• $A_{\rm P} = (0.25 \pm 0.48(\text{stat}) \pm 0.05(\text{syst})) \times 10^{-2}$ in agreement with expectations

Rare Decays of B_s^0 and B_d^0 into Muon Pairs

- FCNC processes highly suppressed in the SM
- $B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-}$ additional helicity suppression
- Predicted in the SM [10]: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ and $\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$
- 2011+2012 pp data: 4.9 fb⁻¹, $\sqrt{s} = 7$ TeV, 20.0 fb⁻¹, $\sqrt{s} = 8$ TeV [5]
- = $\mathcal{B}(B^0_d o \mu^+ \mu^-) < 4.2 imes 10^{-10}$ 95 % CL, compatible with SM and CMS+LHCb
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$ 95 % CL, lower than SM, in better agreement with CMS+LHCb
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$ errors include both the statistical and systematic uncertainties
- p-value of 4.8 % is found for the compatibility of the results with the SM

Rare Decays of B_s^0 and B_d^0 into Muon Pairs

- FCNC processes highly suppressed in the SM
- $B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-}$ additional helicity suppression
- Predicted in the SM [10]: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ and $\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$
- 2011+2012 pp data: 4.9 fb⁻¹, $\sqrt{s} = 7$ TeV, 20.0 fb⁻¹, $\sqrt{s} = 8$ TeV [5]
- = $\mathcal{B}(B^0_d o \mu^+ \mu^-) < 4.2 imes 10^{-10}$ 95 % CL, compatible with SM and CMS+LHCb
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$ 95 % CL, lower than SM, in better agreement with CMS+LHCb
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$ errors include both the statistical and systematic uncertainties
- p-value of 4.8 % is found for the compatibility of the results with the SM

CP Violating Phase ϕ_s in the decay $B_s^0 \rightarrow J/\psi\phi$ [6]

- *CP* violating phase ϕ_s is defined as the weak phase difference between the $B_s^0 \bar{B}_s^0$ mixing amplitude and the $b \to c\bar{c}s$ decay amplitude
- New physics processes could introduce additional contributions to the box diagrams describing the B⁰_s mixing

Summary

- ATLAS has produced impressive and competitive results in beauty and charm physics
- Presented today:
 - Differential production cross-section for X(3872), observed in the decay to $J/\psi\pi^+\pi^-$
 - Currently the most precise single measurement of the B_d^0 width difference $\frac{\Delta \Gamma_d}{\Gamma_d}$
 - Differential production cross-section of J/ψ pairs
 - Rare decays of B_s^0 and B_d^0
 - Outlook for *CP* violation measurement in $B^0_s
 ightarrow J/\psi\phi$ in Run 2
- More public results on ATLAS B-physics TWiki page: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ BPhysPublicResults

BACKUP

LLW| 2017

T. Jakoubek: Beauty and Charm Physics at ATLAS

12/17

2015 Trigger yield

LLW | 2017

Prompt J/ψ Pair Production Cross-section Eff. cross-section of DPS

LLW | 2017

Prompt J/ψ Pair Production Cross-section Eff. cross-section of DPS as a function of \sqrt{s}

Rare Decays of B_s^0 and B_d^0 into Muon Pairs

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \frac{N_{d(s)}}{\epsilon_{\mu^+ \mu^-}} \times [\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)] \frac{\epsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$
(1)

References

- [1] G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003
- [2] M. Aaboud et al., Measurement of the prompt J/\u03c6 pair production cross-section in pp collisions at \u03c6 s = 8 TeV with the ATLAS detector, arXiv:1612.02950 [hep-ex], submitted to EPJC
- [3] M. Aaboud et al., Measurements of $\psi(2S)$ and $X(3872) \rightarrow J/\psi \pi^+\pi^-$ production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, JHEP 1701 (2017) 117
- [4] M. Aaboud et al., Measurement of the relative width difference of the $B^0 \overline{B}^0$ system with the ATLAS detector, JHEP 1606 (2016) 081
- [5] M. Aaboud et al., Study of the rare decays of B_5^0 and B^0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector, Eur. Phys. J. C 76 (2016) no.9, 513
- [6] G. Aad et al., Measurement of the CP-violating phase ϕ_s and the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi \phi$ decays in ATLAS, JHEP 1608 (2016) 147
- [7] C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) no.10, 100001
- [8] A. Lenz and U. Nierste, Numerical Updates of Lifetimes and Mixing Parameters of B Mesons, arXiv:1102.4274 [hep-ph]
- [9] K. A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001
- [10] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, $B_{s,d} \rightarrow l^+l^-$ in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. 112 (2014) 101801
- Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014, arXiv:1412.7515 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hf ag