Search for diboson resonances at CMS

Vieri Candelise

on behalf of the CMS Collaboration

Lake Louise, Canada 22/02/2017

Phenomenology of diboson resonances

- One of the most direct ways to find new physics at the TeV scale
- Clear experimental signature: peak in the VV invariant mass spectrum
- Experimental challenges:
 - many final states: WW, WZ, ZZ, VH, HH
 - different channels, different physics: all-hadronic, semileptonic
 - high energy: merging object, huge backgrounds

Resonances Production Topology

$$gg \rightarrow X \rightarrow VV$$

 $gg \rightarrow X \rightarrow VH$
 $gg \rightarrow X \rightarrow HH$

Phenomenology of diboson resonances

Some very famous models we would like to test at LHC

Warped Extra Dimension

we live in a 4D slice of a 5D world

we live in a *brane* where the Higgs wave function is localised

Gravity wave function dies exponentially from the 5D to us

G* (graviton) s=2 R (radion) s=0

Heavy Vector Triplet

EWSB is due to a new strong interacting composite sector

spin-1 composite resonances

Boosted Topologies

- For high mass resonances bosons get high boost (pT > 200 GeV)
- Hadronic VV/VH final states might merge into a single V/H-jet
- Leptonic VV/VH final states: at high boost leptons overlap in the isolation cones -> special reconstruction applies
- V/H-jet reconstructed with the CA algorithm with large ΔR

Boosted Topologies

- For high mass resonances bosons get high boost (pT > 200 GeV)
- Hadronic VV/VH final states might merge into a single V/H-jet
- Leptonic VV/VH final states: at high boost leptons overlap in the isolation cones -> special reconstruction applies

V/H-jet reconstructed with the CA algorithm with large ΔR

Jet Substructure - basic concepts

Pruning

[Phys.Rev.D 80 051501]

attempts to remove from the jets those constituents that are unlikely to be associated with the jet depends on two parameters: z, r

removes soft and wide angle radiation (PU, UE)

N-Subjettines [JHEP03(2011)015]

Quantifies to what degree jet can be regarded as a jet composed of N jets Discriminate a composite jet w.r.t. a "standard" QCD jet

 $\tau_N = \frac{1}{d_0} \sum_{k} p_{T,k} min\{\Delta R_{1,k}, ..., \Delta R_{N,k}\}$

p_T-weighted sum over all jet constituents of their distance w.r.t. the closest of N axes in a jet

Boosted Higgs Boson Reconstruction

- Crucial aspect of the search strategy is the H→bb reconstruction
- highly boosted Higgs produce collimated pairs of b jets
- merged into a single b jet (fat-b jet) [using AK08]
- exploiting the jet substructure and the b tagging
- b tagging : CSVv2 algorithm

Two Approaches in CMS

subjet b tagger

identify the two subjets by undoing the last iteration of the clustering

apply the b tagging on them

double b tagger

reconstructing the 2 B hadrons within the same fat jet (inclusive vertex finder)

 $\Delta R(bb) \sim 2m^{H}/pT^{H}$

MVA combining tracks associated to tau-axes and svtx observables to separate Hbb to QCD jets

[CMS-PAS-BTV-15-002]

Some Highlights from CMS VV and VH Searches

channel	final state	model tested	reference
Z Z	$\ell\ell qq;\ell\ell J$	Z' HVT type A, bulk Graviton	CMS-PAS-B2G-16-021
WZ	$\ell\ell qq$	W' HVT type A,B, bulk Graviton, RS Graviton	CMS-PAS-B2G-16-022
WW	$\ell u qq + qqqq$ $\ell u qq + qqqq$	bulk Graviton	CMS-PAS-B2G-16-021
WH	$\ell u bb$	W' HVT type B	arXiv:1610.08066
ZH	$\ell\ell bb$	Z' HVT type B	al XIV. 1010.0000
HH	4b	bulk Graviton, Radion	CMS-PAS-B2G-16-008
combination	all	HVT, bulk Graviton	CMS-PAS-B2G-16-007

Results for $X \rightarrow ZV$

divided into $low(\tau_{21} < 0.40)$ high(0.40 < $\tau_{21} < 0.75$) purity

semileptonic+fully hadronic

$$X \to VV \to J(q\bar{q})J(q\bar{q})$$

 $X \to VW \to J(q\bar{q})\ell\nu$

several regions for JJ and Jlv combined in a single likelihood

Results for $X \rightarrow ZV$

resolved(low mass)+ boosted(low+high mass) $\ell\ell qq;\ell\ell J$

Results for $X \rightarrow WZ$

$$W' \to WZ \to \ell\ell qq$$
 (boosted)

Results for $X \rightarrow VH$

- Five channels: Z(ee)H(bb), W(en)H(bb), $Z(\mu\mu)H(bb)$, $W(\mu n)H(bb)$, Z(nn)H(bb) + c.c.
- Shape+Normalisation in data using the alpha method :
- Jet Mass SideBands

$$N_{SR}^{pred}(m_{\mathrm{Vh}}) = N_{SB}^{data,Vjet}(m_{\mathrm{Vh}}) \times \alpha(m_{\mathrm{Vh}}) + N_{SR}^{MC,Top}(m_{\mathrm{Vh}}) + N_{SR}^{MC,VV}(m_{\mathrm{Vh}})$$

Results for $X \rightarrow VH$

Observed and expected 95% CL upper limit on σ×BR(Z'→Zh)×BR(h→bb)

Results for $X \rightarrow VH$

grey line:resonance natural width > experimental resolution (5%) (not in the narrow-width approximation)

Observed exclusion in the HVT parameter plane

bosons

$HH \rightarrow b\overline{b}b\overline{b}$

Data: L = 2.3 fb⁻¹. \sqrt{s} = 13 TeV

Event Selection

- at least 2 jets, pT > 200 GeV, |η| < 2.4
- $\tau 21 < 0.6$
- double b tag > 0.6 (eff ~65% for bb pairs)
- subjet btagging CSVloose > 0.6 (~50%)

- highest HH branching ratio
 BR(H → bb) ~33% -> very high statistics
- huge QCD multijet background
- rely on the power of the newest b tagging algos
- model independent, benchmark models: bulk Graviton (spin2) and Radion (spin0)

Signal Extraction: two parallel approaches

- 1) subjet b tagging + smoothness test
- 2) double b tagging + *Alphabet*

see next slide...

Results for $X \rightarrow HH \rightarrow b\overline{b}b\overline{b}$

[8+13 TeV Combination]

Radion

subjet b-tag

double b-tag

Diboson Combination @13 TeV

CMS-PAS-B2G-16-007

signal strength VS M(V')

8 TeV (19.7 fb-1): 3lv, lvqq, llqq, qqqq, lvbb, qqbb/qqqqq, qqтт 13 TeV (2.2-2.6 fb-1): lvqq, qqqq, llbb, lvbb, vvbb

HVTB with gV=3

Excluding W' and Z' with masses up to about 2.3 TeV (HVT model B)

The key message of my talk in 3 points

- Searching for heavy resonances is one of the most direct ways to find new physics at TeV scale
- Rich phenomenology and final states VV,VH,HH: clear experimental signatures and allows cross check among different channels
- No significant excess observed in data (yet!)

Stay tuned: exciting diboson results in preparation with the 2016-17 LHC data !!

backup

Introduction

- Phenomenology of diboson resonances
- Jets substructure algorithms
- V-tagging and H-tagging
- Resonance searches in the VV final state
- Resonance searches in the VH final state
- Resonance searches in the HH final state

Conclusion and perspectives

Phenomenology of diboson resonances

- One of the most direct ways to find new physics at the TeV scale
- Clear experimental signature: peak in the VV invariant mass spectrum
- Experimental challenges:
 - many final states: WW, WZ, ZZ, VH, HH
 - different channels, different physics: all-hadronic, semileptonic
 - high energy: merging object, huge backgrounds

Resonances Production Topology

peak on a smoothly falling Standard Model background

Search for narrow resonances:

$$\Gamma(res) < \sigma(exp)$$

usually: Drell-Yan or QCD Multijet (leptonic/hadronic final states)

Jet Substructure - basic concepts

Pruning

[Phys.Rev.D 80 051501]

attempts to remove from the jets those constituents that are unlikely to be associated with the jet

N-Subjettines

[JHEP03(2011)015]

Quantifies to what degree jet can be regarded as a jet composed of N jets Discriminate a composite jet w.r.t. a "standard" QCD jet

$HH \rightarrow b\bar{b}\tau^{\dagger}\tau^{\dagger}$

Data: L = 19.7 fb⁻¹. \sqrt{s} = 8 TeV

See Camilla's talk this afternoon!

- semileptonic τ decay : $\tau(\mathbf{h})\tau(\boldsymbol{\mu})$, $\tau(\mathbf{h})\tau(\mathbf{e})$ BR~23%
- background: mainly ttbar, data driven
- theory: Radion spin-0 to HH
- Isolated tau

Event Selection

 $\begin{array}{l} p_{\rm T,\tau vis} > 35 \; {\rm GeV}, \, p_{\rm T,\ell} > 10 \; {\rm GeV} \\ 0.1 < \Delta R_{\ell,\tau vis} < 1.0 \; , \, m_{\rm vis}(\ell,\tau_{\rm vis}) > 10 \; {\rm GeV} \\ |\vec{p}_{\rm T}^{\rm miss}| > 50 \; {\rm GeV} \\ p_{T}(\tau\tau) \; {\rm from \; SVFit} > 100 \; {\rm GeV} \\ p_{T,{\rm jet}} > 400 \; {\rm GeV} \; {\rm and} \; |\eta_{\rm jet}| < 1 \\ 100 < m_{\rm jet}^{P} < 140 \; {\rm GeV}, \, \tau_{21} < 0.75 \\ {\rm Higgs-b-tagging: \; 1 \; CSVL-tagged \; fat \; jet \; if \; } \Delta R({\rm sj1,sj2}) < 0.3 \\ {\rm or \; 2 \; CSVL-tagged \; subjets \; if \; } \Delta R({\rm sj1,sj2}) > 0.3 \; \qquad jets \\ N_{\rm b-tagged \; jets} = 0 \end{array}$

 $H \rightarrow \tau \tau$ reconstruction

- algorithm for $\tau\tau$ invariant mass reconstruction
- Maximise likelihood on event-by-event basis
- consider the MET as coming entirely from the τ invisible products
- Measured METx and METy combined including terms for the τ decay visible
 +MET resolution

$HH \rightarrow b\bar{b}\tau^{+}\bar{\tau}$

tau isolation in the µ-had channel data/MC comparison nice agreement

HH invariant mass

95% Exclusion Limit in the Asymptotic Approximation, spin-0 Radion L=1 ranging from 850 to 30 fb for resonance masses between 800 and 2500 GeV

HH → bbbb

NEW! B2G-PAS-16-008 $p = \begin{bmatrix} b \\ b \\ b \\ b \end{bmatrix}$ $p = \begin{bmatrix} b \\ b \\ b \\ b \end{bmatrix}$

Data: L = 2.3 fb⁻¹. \sqrt{s} = 13 TeV

highest HH branching ratio
 BR(H → bb) ~33% -> very high statistics

- huge QCD multijet background
- rely on the power of the newest b tagging algos
- model independent, benchmark models: bulk Graviton (spin2) and Radion (spin0)

Event Selection

- at least 2 jets, pT > 200 GeV, |η| < 2.4
- $\tau 21 < 0.6$
- double b tag > 0.6 (eff \sim 65% for bb pairs)
- subjet btagging CSVloose > 0.6 (~50%)

Signal Extraction: two parallel approaches

- 1) subjet b tagging + *smoothness test*
- 2) double b tagging + *Alphabet*

see next slide...

26

HH → bbbb: "smoothness test"

Sub-jet b tagging +smoothness test results $M_{ii}^{red} > 1$ TeV

 $M_{jj}^{red} = M_{jj} - (M_{j1} - M_H) - (M_{j2} - M_H)$

- Background only hypothesis VS. M_{jj}subtr
- Fit: levelled exp w/ 68% and 95% CL bands exponential power law (cross checks)

M_{jj}^{red}: resolution ~8-10% better @1-3TeV

$$\frac{dN_{\text{Background}}}{ds} = N_B \cdot e^{-ax/(1+a\cdot b\cdot x)}$$

VH Resonances: Strategy Overview

VV CMS-PAS-B2G-16-003

- Full 2015 dataset, L=2.17–2.52 fb⁻¹ $@\sqrt{s}=13 \text{ TeV}$
- Five channels: Z(ee)H(bb), W(en)H(bb), Z(µµ)H(bb), W(µn)H(bb), Z(nn)H(bb)

+ C.C.

<u>Objects</u>

Higgs Reconstruction

- AK8 jet
- p_T>200 GeV,
- pruned mass 105<mJ<135 GeV (jec)
- 1/2 b-tag sub-jets.

$\ell\ell$ +bb Selection

- $p_T(\mu) > 55 \text{ GeV}, p_T(e) > 135 \text{ GeV}$
- $-70 < M_{\parallel} < 110$
- $p_T(Z) > 200 \text{ GeV}$
- $|\Delta \eta(II,jet)| < 5$
- $\Delta \phi$ (II,jet) >2.5

*ℓV***+bb Selection**

- $pT(\mu) > 55 \text{ GeV}, pT(e) > 135 \text{ GeV}$
- veto extra leptons
- **½**⊤>80 GeV
- $p_T(W) > 200 \text{ GeV}$

∨∨+bb Selection

- **½**_T>200 GeV; p_T>200 GeV
- $-\Delta \phi(\text{jet}, \not E_T) > 2$
- b-jet veto

VH Resonances: Strategy Overview

CMS-PAS-B2G-16-003

- Full 2015 dataset, L=2.17–2.52 fb⁻¹ @√s=13 TeV
- Five channels: Z(ee)H(bb), W(en)H(bb), Z(μμ)H(bb), W(μη)H(bb), Z(nn)H(bb)

+ C.C.

V+jets background

$$N_{SR}^{pred}(m_{\mathrm{Vh}}) = N_{SB}^{data,Vjet}(m_{\mathrm{Vh}}) \times \alpha(m_{\mathrm{Vh}}) + N_{SR}^{MC,Top}(m_{\mathrm{Vh}}) + N_{SR}^{MC,VV}(m_{\mathrm{Vh}})$$

- Main Background (40%/60% W/Z)
- · Shape+Normalisation in data using the alpha method:
- Jet Mass SideBands
- Separate V+jets from VV (MC) and top (enriched CR)
- Systematics cancels out in the ratio

VH Resonances: Results

observed events on Vh invariant mass

VH Resonances: Results

observed events on Vh invariant mass

31

HH → bbbb: "alphabet method"

Double b tagging + *alphabet* results M_{jj}^{red} > 1000 GeV

Quartic fit to R = double b tag pass/fail ratio

two orthogonal variables

- Pruned jet mass
- Double b tagger discriminator

- Predicting background normalisation and Mjj shape based on several sidebands (generalised ABCD method)
- R obtained as a function of the pruned mass in the sidebands

HH → bbbb: "alphabet method"

Double b tagging + *alphabet* results M_{jj}^{red} > 1000 GeV

Quartic fit to R = double b tag pass/fail ratio

predicted M^{red} background distribution in the jj signal region, after applying the "Alphabet" method

each event in the anti-tag region is scaled by the appropriate pass fail ratio given its pruned jet mass.

33

HH → bbbb : limit extraction

Final results exploiting all the information from the two separate approaches

HH → bbbb: limit extraction

Final results exploiting all the information from sub-jet and double b taggers

Conclusion and Perspectives

Boosted Higgs bosons are a central part of the new physics searches in CMS in Run II

- Several HH results 8 TeV (4b, bb $\tau\tau$) and 13 TeV (VH, HH4b)
- Many other HH results in preparation (bb $\tau\tau$, bbyy, Combination @ 13 TeV)
- Tools and performance well tested and stable (double b tagger, subjet, Higgs reconstruction)

Many other results available in CMS

Ready to use the Higgs to finally cross the Standard Model!

Boosted Higgs Boson Reconstruction 15.002

- signal H→ bb from simulation
- b tagging algorithm: CSVv2

- simulated QCD jets w/ 0/1/2 b tag
- AK08 jets

Remember Dinko's talk