Searches for New s-channel Resonances with the ATLAS Detector at 13 TeV Lake Louise Winter Institute Chateau Lake Louise, Canada, 22 Feb. 2017 **Christopher Willis on behalf of the ATLAS Collaboration** ## Introduction - \rightarrow Brief overview of selected searches for new s-channel resonances in the 2015+2016 ATLAS dataset - \rightarrow s-channel process corresponds to the particles 1,2 joining into an intermediate particle that eventually splits into 3,4 - → Historically great place to look for evidence of New Physics - → New resonances address big questions (unification, new forces, etc.) $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1} \qquad \sqrt{s} = 8, 13 \text{ TeV}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Reference | |--|---|---| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 3 HLZ
6 | 1604.07773
1407.2410
1311.2006
ATLAS-CONF-2016-069
1606.02265
1512.02586
1405.4123
1606.03833
ATLAS-CONF-2016-062
ATLAS-CONF-2016-049
1505.07018
ATLAS-CONF-2016-013 | | CI $\ell\ell qq$ 2 e, μ 3.2 Λ CI $\ell\ell qq$ 2 e, μ ≥ 1 b, ≥1 j Yes 20.3 Λ 4.9 TeV ℓqq Axial-vector mediator (Dirac DM) 0 e, μ ≥ 1 j Yes 3.2 ℓqq Axial-vector mediator (Dirac DM) 0 e, ℓqq 1 j Yes 3.2 ℓqq 3.2 ℓqq 4.9 TeV | = 3 | ATLAS-CONF-2016-045
1502.07177
1603.08791
ATLAS-CONF-2016-061
ATLAS-CONF-2016-082
ATLAS-CONF-2016-055
1607.05621
1410.4103
1408.0886 | | Axial-vector mediator (Dirac DM) 0 e, μ , 1 γ 1 j Yes 3.2 m _A 710 GeV g_q =0. | | ATLAS-CONF-2016-069
1607.03669
1504.04605 | | Immune | 0.25 , g_{χ} =1.0, $m(\chi)$ < 250 GeV
0.25 , g_{χ} =1.0, $m(\chi)$ < 150 GeV
0.25 (GeV) | 1604.07773
1604.01306
ATLAS-CONF-2015-080 | | Scalar LQ 1st gen 2 e $\geq 2j$ - 3.2 LQ mass 1.1 TeV $\beta = 1$ Scalar LQ 2nd gen 2 μ $\geq 2j$ - 3.2 LQ mass 1.05 TeV $\beta = 1$ Scalar LQ 3rd gen 1 e, μ ≥ 1 b, ≥ 3 j Yes 20.3 LQ mass 640 GeV | 1 | 1605.06035
1605.06035
1508.04735 | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | (T,B) doublet
(B,Y) doublet
pin singlet
(B,Y) doublet | 1505.04306
1505.04306
1505.04306
1409.5500
1509.04261
ATLAS-CONF-2016-032 | | Excited quark $q^* o qy$ 1 γ 1 j - 3.2 q* mass 4.4 TeV only μ Excited quark $q^* o qg$ - 2 j - 15.7 q* mass 5.6 TeV only μ Excited quark $b^* o bg$ - 1 b, 1 j - 8.8 b* mass 2.3 TeV b^* Excited quark $b^* o Wt$ 1 or 2 e, μ 1 b, 2-0 j Yes 20.3 b* mass 1.5 TeV $f_g = \mu$ Excited lepton ℓ^* 3 e, μ 20.3 ℓ^* mass 3.0 TeV | $u^* \text{ and } d^*, \Lambda = m(q^*)$ $u^* \text{ and } d^*, \Lambda = m(q^*)$ $: f_L = f_R = 1$ 3.0 TeV 1.6 TeV | 1512.05910
ATLAS-CONF-2016-069
ATLAS-CONF-2016-060
1510.02664
1411.2921
1411.2921 | | LSTC $a_T \to W\gamma$ 1 $e, \mu, 1 \gamma$ - Yes 20.3 a _T mass 960 GeV LRSM Maiorana ν 2 e, μ 2 j - 20.3 N ⁰ mass 2.0 TeV m(W) Higgs triplet $H^{\pm\pm} \to ee$ 2 e (SS) 19.9 H ^{$\pm\pm$} mass 570 GeV DY pr Monotop (non-res prod) 1 e, μ 1 b Yes 20.3 spin-1 invisible particle mass 657 GeV Multi-charged particles 20.3 multi-charged particle mass 785 GeV | $W_R)=2.4$ TeV, no mixing production, ${\rm BR}(H_L^{\pm\pm}\to{\rm ee})=1$ production, ${\rm BR}(H_L^{\pm\pm}\to{\ell\tau})=1$ res $=0.2$ production, $ q =5{\rm e}$ production, $ g =1g_D$, spin $1/2$ | 1407.8150
1506.06020
ATLAS-CONF-2016-051
1411.2921
1410.5404
1504.04188
1509.08059 | ^{*}Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J). ## **Dilepton Analysis** - → Search for both Resonant and Non-Resonant Phenomena - \rightarrow Selection designed for events with two high p_T , isolated leptons - → Backgrounds simulated with MC; fakes derived with data-driven method - → Largest ee systematic: DY PDFs; largest μμ systematic: muon momentum resolution 5 #### **Dilepton Limits** - \rightarrow ee/µµ channels combined for limits \rightarrow ee dominates due to higher efficiency and better resolution - → Reweighting scheme generates set of signal templates generated over search range | $\frac{\Delta^{\circ}}{R} = \frac{10^{2}}{10}$ ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, \int Ldt = 13.3 \text{ fb}^{-1}$ Observed $p_{0}, Z'_{\chi} \rightarrow II$ | |--| | 10 ⁻¹ Local significance oo oo local significance 100 signif | | 10 ⁻² = 0ol 1o 3o 10 ⁻⁴ = Global significance for largest excess | | 0.2 0.3 0.4 1 2 3 m _{z'} [TeV] | | | | | Lower limits on $m_{Z'}$ [TeV] | | | | | | | |-------------------------|-----------|----------------------|--------------------------------|------|----------|------|------------|------|--| | Model | Width [%] | θ_{E_6} [Rad] | ee | | $\mu\mu$ | | $\ell\ell$ | | | | | | | Obs | Exp | Obs | Exp | Obs | Exp | | | Z'_{SSM} | 3.0 | - | 3.85 | 3.86 | 3.49 | 3.53 | 4.05 | 4.06 | | | Z_χ' | 1.2 | 0.50 | 3.48 | 3.49 | 3.18 | 3.19 | 3.66 | 3.67 | | | $Z_{ m S}'$ | 1.2 | 0.63π | 3.43 | 3.44 | 3.14 | 3.14 | 3.62 | 3.61 | | | Z_I' | 1.1 | 0.71π | 3.37 | 3.37 | 3.08 | 3.08 | 3.55 | 3.55 | | | $Z'_{\eta} \ Z'_{ m N}$ | 0.6 | $0.21~\pi$ | 3.25 | 3.25 | 2.96 | 2.94 | 3.43 | 3.42 | | | $Z_{\rm N}^{\prime}$ | 0.6 | -0.08π | 3.23 | 3.23 | 2.95 | 2.94 | 3.41 | 3.41 | | | Z_ψ' | 0.5 | 0 π | 3.18 | 3.18 | 2.90 | 2.88 | 3.36 | 3.35 | | #### 1+MET Analysis - → Search for Resonant Phenomena (SSM W', L-R symmetric models) - \rightarrow Selection designed for single high p_T, isolated lepton and MET - → Backgrounds simulated with MC, fakes with data-driven method - \rightarrow Largest systematics from background extrapolations on m_T: ev multijet; $\mu\nu$: top, diboson 6 4.74 4.77 #### arXiv:1607.08079 High-Mass LFV Analysis - \rightarrow Direct production of different flavors lepton pairs in SM forbidden. Search performed for lepton flavor violating decays (LFV Z', QBH, SUSY) in $\mathbf{m}_{e\mu}$ /m_{e τ} /m_{$\mu\tau$} - \rightarrow Select events with two high p_T , isolated different flavor lepton pairs - \rightarrow Backgrounds from final states with different flavor lepton pairs (e.g. $qq \rightarrow \gamma^*/Z \rightarrow t\bar{t}$) - \rightarrow Largest Systematic is from $t\bar{t}$ high mass extrapolation, followed by PDFs. | 10 ⁻² | Expected limit Expected ± 1σ Expected ± 2σ Observed limit Z' | |---|--| | 10 ⁻³ ATLAS $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $Z' \rightarrow e\mu$ 10 ⁻⁴ 10 ⁻⁵ 1 1.5 2 2.5 | 3 3.5 4 4.5 5
M _{Z'} [TeV] | | Model | Expec | ted Lim | it [TeV] | Observed Limit [TeV] | | | | |----------------------------|-------|---------|------------|----------------------|---------|-----|--| | Wiodei | еμ | $e\tau$ | $\mu \tau$ | еμ | $e\tau$ | μτ | | | Z' | 3.2 | 2.7 | 2.6 | 3.0 | 2.7 | 2.6 | | | RPV SUSY $ ilde{ u}_{ au}$ | 2.5 | 2.1 | 2.0 | 2.3 | 2.2 | 1.9 | | | QBH ADD $n = 6$ | 4.6 | 4.1 | 3.9 | 4.5 | 4.1 | 3.9 | | | QBH RS n = 1 | 2.5 | 2.2 | 2.1 | 2.4 | 2.2 | 2.1 | | #### <u>Dijet Search</u> $$\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$ - → Search for Excited Quarks, Z', W', QBH in mass, CI in angular distributions - \rightarrow Select events with at least 2 high p_T jets - \rightarrow Require |y*|<0.6 for **Resonant Search** to reduce QCD; BSM peak y*=0 - → Functional form fit to data to estimate SM background $$L_{qq} = \frac{2\pi}{\Lambda^2} \eta_{\rm LL} (\bar{q}_{\rm L} \gamma^{\mu} q_{\rm L}) (\bar{q}_{\rm L} \gamma_{\mu} q_{\rm L})$$ - \rightarrow **Angular search** uses |y*|<1.7, |y_B|<1.1 - → Uses LO MC + NLO QCD and LO EW corrections #### **Summary Dijet Limits** - \rightarrow Set limits on benchmark leptophobic Z' with gauge coupling g_q (dark-matter model) - → Take advantage of **Dijet+ISR** to evade trigger limitations at low mass - → Combination covers large mass range and parameter space #### b-jet Search - → New particle couples to b-quark → decay to bb, bq or bg pairs → BSM Models: New Scalars, Leptophobic Z', b* - → Search divides events into two channels: "1b" inclusive, and "2b" - → Functional form fit to data to model SM background 10 $m(b^*)>2.3 \text{ TeV, } Br(b^*\to bg)=0.85$ $m(Z'\rightarrow bb) > 1.5 \text{ TeV}$ #### **Doubly Charged Higgs** - → Search for Doubly charged Higgs (LRSM, Higgs triplets, Little Higgs, Seesaw, etc) - → Background estimated using MC, data-driven for fake rate models light flavor jets - \rightarrow Selection requires two high p_T, isolated lepton pairs \rightarrow split into orthogonal regions by sign - → SS signal, two OS control, and SS validation - → Derive SFs from OSCR, apply to SR to correct yields, check validity in SSVR - \rightarrow Charge Mis-Id probability derived from Z \rightarrow ee events #### **Doubly Charged Higgs** \overline{q} H^{++} ℓ^{+} H^{--} ℓ^{-} - → Theory Uncertainties considered on DY and ttbar, PDFs - → Exp. Uncertainties account for Electron Efficiencies, charge Mis-ID - → No signal observed, set 95% CL limits ## Conclusion → Limits improved greatly for a wide range of models with Run-2 dataset - \rightarrow LHC performing extremely well - → Stay tuned for updated results with the full 2016 data! ## Backup ## ATLAS Performance → Total collected good data is 36.5 fb⁻¹ (3.2 fb⁻¹ in 2015, 33.3 fb⁻¹ in 2016) $\epsilon > 90\%$ usable for analysis → Results presented here based on full 2015 dataset and partial 2016 dataset #### arXiv:1607.08079 High-Mass LFV Analysis - \rightarrow Direct production of different flavors lepton pairs in SM forbidden. Search performed for lepton flavor violating decays (LFV Z', QBH, SUSY) in $m_{e\mu}/m_{e\tau}/m_{\mu\tau}$ - \rightarrow Select events with two high p_T, isolated different flavor lepton pairs - → W+jets background dominant in et and μt channels - \rightarrow Fake rate evaluated from data in W(\rightarrow e/ μ)+jets CR \rightarrow weight W+jets MC | Model | Expec | ted Lim | it [TeV] | Observed Limit [TeV] | | | |----------------------------|-------|---------|----------|----------------------|---------|-----| | Wiodei | eμ | $e\tau$ | μτ | еμ | $e\tau$ | μτ | | Z' | 3.2 | 2.7 | 2.6 | 3.0 | 2.7 | 2.6 | | RPV SUSY $ ilde{ u}_{ au}$ | 2.5 | 2.1 | 2.0 | 2.3 | 2.2 | 1.9 | | QBH ADD $n = 6$ | 4.6 | 4.1 | 3.9 | 4.5 | 4.1 | 3.9 | | QBH RS $n = 1$ | 2.5 | 2.2 | 2.1 | 2.4 | 2.2 | 2.1 | #### Dijet+ISR Search - → Sensitivity to light dijet resonances reduced by trigger limitations → Circumvent by requiring a hard ISR object in the final state - → Same strategy as high-mass Dijet search - \rightarrow Two Channel: X+j (at least 1 jet), X+ γ (at least 1 photon) #### Dilepton Search - \rightarrow Highest Mass Dielectron Event: 2.38 TeV - \rightarrow Leading electron has an E_T of 889 GeV, and an η of -0.51 - \rightarrow Subleading electron has an E_T of 868 GeV, and an η of 1.14 #### Lepton+MET Search - \rightarrow Electron with p_T = 1.09 TeV, η = 0.4, φ = -3.0, - \rightarrow Missing transverse energy with $E_T=1.09$ TeV, $\phi=-0.02$ - \rightarrow Transverse Mass m_T = 2.19 TeV #### High-Mass LFV Search - → Highest Mass eµ Event: 2.09 TeV - \rightarrow Electron with E_T of 1164 GeV, and an η of 1.64, $\phi = -2.8$ - \rightarrow Antimuon with p_T of 617 GeV, and an η of 0.29, ϕ = 0.4 #### Dijet Search - \rightarrow The two highest-mass central high-p $_T$ jets: - \rightarrow Transverse momenta of 2.93 and 2.77 TeV, and a |y*| of 0.51 - → Invariant mass is 6.46 TeV #### Resonant Dilepton Models #### <u>Additional Resonances</u> - RS Graviton Models - Spin-2 Resonance - Predicts excited KK modes of Graviton → first excitation G* - k/M_{Pl} sets scale of spacetime curvature and resonance width #### Resonant Z' - Additional Spin-1 Gauge Bosons - E₆ GUT Models - $E_6 \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$ - $Z'(\theta_{E_6}) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$ - Six different values of mixing angle θ lead to observable Z' states: Z'_{ψ} , $Z'_{\rm N}$, Z'_{η} , Z'_{I} , $Z'_{\rm S}$ and Z'_{χ} - SSM Benchmark Model - Z'_{SSM} assigned same Fermion couplings as SM Z Boson #### Non-Resonant Dilepton Models $$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} - \eta_{XY} \frac{F_I}{\Lambda^2} + \frac{F_C}{\Lambda^4}$$ #### Non-Resonant CI - Quark and Lepton Compositeness - Λ defines Compositeness Scale - η_{xy} defines the chiral structure of interaction \rightarrow interference - Signal appears as broad excess above SM expectation #### ADD Graviton - Solution to Hierarchy Problem - Large extra dimensions - KK modes → almost continuous spectrum - M_S sets scale of quantum gravity - F is dependence on extra dimension assumptions $$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} + \mathcal{F} \frac{F_I}{M_S^4} + \mathcal{F}^2 \frac{F_G}{M_S^8}$$ ## **Dilepton CI Limits** **RL** Dest RR Const RR Dest Chiral Structure RL Const LL Dest LR Const LR Dest #### Dilepton Search Acc*Eff #### High-Mass LFV Acc*Eff #### Dijet Search Acc*Eff #### b-jet Search b-tagging Efficiency #### Dilepton PDF Systematic Uncertainty - PDF Uncertainty becomes ever more dominant at high mass - → will not affect resonant dilepton limits - → but loose ability to differentiate between models in discovery scenario #### **Diboson Summary Limits**