Searches for New s-channel Resonances with the ATLAS Detector at 13 TeV

Lake Louise Winter Institute
Chateau Lake Louise, Canada, 22 Feb. 2017

Christopher Willis on behalf of the ATLAS Collaboration

Introduction

- \rightarrow Brief overview of selected searches for new s-channel resonances in the 2015+2016 ATLAS dataset
- \rightarrow s-channel process corresponds to the particles 1,2 joining into an intermediate particle that eventually splits into 3,4

- → Historically great place to look for evidence of New Physics
- → New resonances address big questions (unification, new forces, etc.)

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1} \qquad \sqrt{s} = 8, 13 \text{ TeV}$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reference
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 HLZ 6	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
CI $\ell\ell qq$ 2 e, μ 3.2 Λ CI $\ell\ell qq$ 2 e, μ ≥ 1 b, ≥1 j Yes 20.3 Λ 4.9 TeV ℓqq Axial-vector mediator (Dirac DM) 0 e, μ ≥ 1 j Yes 3.2 ℓqq Axial-vector mediator (Dirac DM) 0 e, ℓqq 1 j Yes 3.2 ℓqq 3.2 ℓqq 4.9 TeV ℓqq	= 3	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
Axial-vector mediator (Dirac DM) 0 e, μ , 1 γ 1 j Yes 3.2 m _A 710 GeV g_q =0.		ATLAS-CONF-2016-069 1607.03669 1504.04605
Immune	0.25 , g_{χ} =1.0, $m(\chi)$ < 250 GeV 0.25 , g_{χ} =1.0, $m(\chi)$ < 150 GeV 0.25 (GeV)	1604.07773 1604.01306 ATLAS-CONF-2015-080
Scalar LQ 1st gen 2 e $\geq 2j$ - 3.2 LQ mass 1.1 TeV $\beta = 1$ Scalar LQ 2nd gen 2 μ $\geq 2j$ - 3.2 LQ mass 1.05 TeV $\beta = 1$ Scalar LQ 3rd gen 1 e, μ ≥ 1 b, ≥ 3 j Yes 20.3 LQ mass 640 GeV	1	1605.06035 1605.06035 1508.04735
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(T,B) doublet (B,Y) doublet pin singlet (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited quark $q^* o qy$ 1 γ 1 j - 3.2 q* mass 4.4 TeV only μ Excited quark $q^* o qg$ - 2 j - 15.7 q* mass 5.6 TeV only μ Excited quark $b^* o bg$ - 1 b, 1 j - 8.8 b* mass 2.3 TeV b^* Excited quark $b^* o Wt$ 1 or 2 e, μ 1 b, 2-0 j Yes 20.3 b* mass 1.5 TeV $f_g = \mu$ Excited lepton ℓ^* 3 e, μ 20.3 ℓ^* mass 3.0 TeV	$u^* \text{ and } d^*, \Lambda = m(q^*)$ $u^* \text{ and } d^*, \Lambda = m(q^*)$ $: f_L = f_R = 1$ 3.0 TeV 1.6 TeV	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
LSTC $a_T \to W\gamma$ 1 $e, \mu, 1 \gamma$ - Yes 20.3 a _T mass 960 GeV LRSM Maiorana ν 2 e, μ 2 j - 20.3 N ⁰ mass 2.0 TeV m(W) Higgs triplet $H^{\pm\pm} \to ee$ 2 e (SS) 19.9 H ^{$\pm\pm$} mass 570 GeV DY pr Monotop (non-res prod) 1 e, μ 1 b Yes 20.3 spin-1 invisible particle mass 657 GeV Multi-charged particles 20.3 multi-charged particle mass 785 GeV	$W_R)=2.4$ TeV, no mixing production, ${\rm BR}(H_L^{\pm\pm}\to{\rm ee})=1$ production, ${\rm BR}(H_L^{\pm\pm}\to{\ell\tau})=1$ res $=0.2$ production, $ q =5{\rm e}$ production, $ g =1g_D$, spin $1/2$	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

Dilepton Analysis

- → Search for both Resonant and Non-Resonant Phenomena
- \rightarrow Selection designed for events with two high p_T , isolated leptons
- → Backgrounds simulated with MC; fakes derived with data-driven method
- → Largest ee systematic: DY PDFs; largest μμ systematic: muon momentum resolution

5

Dilepton Limits

- \rightarrow ee/µµ channels combined for limits \rightarrow ee dominates due to higher efficiency and better resolution
- → Reweighting scheme generates set of signal templates generated over search range

$\frac{\Delta^{\circ}}{R} = \frac{10^{2}}{10}$ ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, \int Ldt = 13.3 \text{ fb}^{-1}$ Observed $p_{0}, Z'_{\chi} \rightarrow II$
10 ⁻¹ Local significance oo oo local significance 100 oo local signif
10 ⁻² = 0ol 1o 3o 10 ⁻⁴ = Global significance for largest excess
0.2 0.3 0.4 1 2 3 m _{z'} [TeV]

			Lower limits on $m_{Z'}$ [TeV]						
Model	Width [%]	θ_{E_6} [Rad]	ee		$\mu\mu$		$\ell\ell$		
			Obs	Exp	Obs	Exp	Obs	Exp	
Z'_{SSM}	3.0	-	3.85	3.86	3.49	3.53	4.05	4.06	
Z_χ'	1.2	0.50	3.48	3.49	3.18	3.19	3.66	3.67	
$Z_{ m S}'$	1.2	0.63π	3.43	3.44	3.14	3.14	3.62	3.61	
Z_I'	1.1	0.71π	3.37	3.37	3.08	3.08	3.55	3.55	
$Z'_{\eta} \ Z'_{ m N}$	0.6	$0.21~\pi$	3.25	3.25	2.96	2.94	3.43	3.42	
$Z_{\rm N}^{\prime}$	0.6	-0.08π	3.23	3.23	2.95	2.94	3.41	3.41	
Z_ψ'	0.5	0 π	3.18	3.18	2.90	2.88	3.36	3.35	

1+MET Analysis

- → Search for Resonant Phenomena (SSM W', L-R symmetric models)
- \rightarrow Selection designed for single high p_T, isolated lepton and MET
- → Backgrounds simulated with MC, fakes with data-driven method
- \rightarrow Largest systematics from background extrapolations on m_T: ev multijet; $\mu\nu$: top, diboson

6

4.74

4.77

arXiv:1607.08079 High-Mass LFV Analysis

- \rightarrow Direct production of different flavors lepton pairs in SM forbidden. Search performed for lepton flavor violating decays (LFV Z', QBH, SUSY) in $\mathbf{m}_{e\mu}$ /m_{e τ} /m_{$\mu\tau$}
- \rightarrow Select events with two high p_T , isolated different flavor lepton pairs
- \rightarrow Backgrounds from final states with different flavor lepton pairs (e.g. $qq \rightarrow \gamma^*/Z \rightarrow t\bar{t}$)
- \rightarrow Largest Systematic is from $t\bar{t}$ high mass extrapolation, followed by PDFs.

10 ⁻²	Expected limit Expected ± 1σ Expected ± 2σ Observed limit Z'
10 ⁻³ ATLAS $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $Z' \rightarrow e\mu$ 10 ⁻⁴ 10 ⁻⁵ 1 1.5 2 2.5	3 3.5 4 4.5 5 M _{Z'} [TeV]

Model	Expec	ted Lim	it [TeV]	Observed Limit [TeV]			
Wiodei	еμ	$e\tau$	$\mu \tau$	еμ	$e\tau$	μτ	
Z'	3.2	2.7	2.6	3.0	2.7	2.6	
RPV SUSY $ ilde{ u}_{ au}$	2.5	2.1	2.0	2.3	2.2	1.9	
QBH ADD $n = 6$	4.6	4.1	3.9	4.5	4.1	3.9	
QBH RS n = 1	2.5	2.2	2.1	2.4	2.2	2.1	

<u>Dijet Search</u>

$$\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

- → Search for Excited Quarks, Z', W', QBH in mass, CI in angular distributions
- \rightarrow Select events with at least 2 high p_T jets
- \rightarrow Require |y*|<0.6 for **Resonant Search** to reduce QCD; BSM peak y*=0
 - → Functional form fit to data to estimate SM background

$$L_{qq} = \frac{2\pi}{\Lambda^2} \eta_{\rm LL} (\bar{q}_{\rm L} \gamma^{\mu} q_{\rm L}) (\bar{q}_{\rm L} \gamma_{\mu} q_{\rm L})$$

- \rightarrow **Angular search** uses |y*|<1.7, |y_B|<1.1
 - → Uses LO MC + NLO QCD and LO EW corrections

Summary Dijet Limits

- \rightarrow Set limits on benchmark leptophobic Z' with gauge coupling g_q (dark-matter model)
- → Take advantage of **Dijet+ISR** to evade trigger limitations at low mass
- → Combination covers large mass range and parameter space

b-jet Search

- → New particle couples to b-quark → decay to bb, bq or bg pairs
 → BSM Models: New Scalars, Leptophobic Z', b*
- → Search divides events into two channels: "1b" inclusive, and "2b"
- → Functional form fit to data to model SM background

10

 $m(b^*)>2.3 \text{ TeV, } Br(b^*\to bg)=0.85$

 $m(Z'\rightarrow bb) > 1.5 \text{ TeV}$

Doubly Charged Higgs

- → Search for Doubly charged Higgs (LRSM, Higgs triplets, Little Higgs, Seesaw, etc)
- → Background estimated using MC, data-driven for fake rate models light flavor jets
- \rightarrow Selection requires two high p_T, isolated lepton pairs \rightarrow split into orthogonal regions by sign
 - → SS signal, two OS control, and SS validation
 - → Derive SFs from OSCR, apply to SR to correct yields, check validity in SSVR
- \rightarrow Charge Mis-Id probability derived from Z \rightarrow ee events

Doubly Charged Higgs

 \overline{q} H^{++} ℓ^{+} H^{--} ℓ^{-}

- → Theory Uncertainties considered on DY and ttbar, PDFs
- → Exp. Uncertainties account for Electron Efficiencies, charge Mis-ID
- → No signal observed, set 95% CL limits

Conclusion

→ Limits improved greatly for a wide range of models with Run-2 dataset

- \rightarrow LHC performing extremely well
- → Stay tuned for updated results with the full 2016 data!

Backup

ATLAS Performance

→ Total collected good data is 36.5 fb⁻¹ (3.2 fb⁻¹ in 2015, 33.3 fb⁻¹ in 2016) $\epsilon > 90\%$ usable for analysis

→ Results presented here based on full 2015 dataset and partial 2016 dataset

arXiv:1607.08079 High-Mass LFV Analysis

- \rightarrow Direct production of different flavors lepton pairs in SM forbidden. Search performed for lepton flavor violating decays (LFV Z', QBH, SUSY) in $m_{e\mu}/m_{e\tau}/m_{\mu\tau}$
- \rightarrow Select events with two high p_T, isolated different flavor lepton pairs
- → W+jets background dominant in et and μt channels
- \rightarrow Fake rate evaluated from data in W(\rightarrow e/ μ)+jets CR \rightarrow weight W+jets MC

Model	Expec	ted Lim	it [TeV]	Observed Limit [TeV]		
Wiodei	eμ	$e\tau$	μτ	еμ	$e\tau$	μτ
Z'	3.2	2.7	2.6	3.0	2.7	2.6
RPV SUSY $ ilde{ u}_{ au}$	2.5	2.1	2.0	2.3	2.2	1.9
QBH ADD $n = 6$	4.6	4.1	3.9	4.5	4.1	3.9
QBH RS $n = 1$	2.5	2.2	2.1	2.4	2.2	2.1

Dijet+ISR Search

- → Sensitivity to light dijet resonances reduced by trigger limitations → Circumvent by requiring a hard ISR object in the final state
- → Same strategy as high-mass Dijet search
- \rightarrow Two Channel: X+j (at least 1 jet), X+ γ (at least 1 photon)

Dilepton Search

- \rightarrow Highest Mass Dielectron Event: 2.38 TeV
 - \rightarrow Leading electron has an E_T of 889 GeV, and an η of -0.51
 - \rightarrow Subleading electron has an E_T of 868 GeV, and an η of 1.14

Lepton+MET Search

- \rightarrow Electron with p_T = 1.09 TeV, η = 0.4, φ = -3.0,
- \rightarrow Missing transverse energy with $E_T=1.09$ TeV, $\phi=-0.02$
- \rightarrow Transverse Mass m_T = 2.19 TeV

High-Mass LFV Search

- → Highest Mass eµ Event: 2.09 TeV
 - \rightarrow Electron with E_T of 1164 GeV, and an η of 1.64, $\phi = -2.8$
 - \rightarrow Antimuon with p_T of 617 GeV, and an η of 0.29, ϕ = 0.4

Dijet Search

- \rightarrow The two highest-mass central high-p $_T$ jets:
 - \rightarrow Transverse momenta of 2.93 and 2.77 TeV, and a |y*| of 0.51
 - → Invariant mass is 6.46 TeV

Resonant Dilepton Models

<u>Additional Resonances</u>

- RS Graviton Models
 - Spin-2 Resonance
 - Predicts excited KK modes of Graviton → first excitation G*
 - k/M_{Pl} sets scale of spacetime curvature and resonance width

Resonant Z'

- Additional Spin-1 Gauge Bosons
- E₆ GUT Models
 - $E_6 \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
 - $Z'(\theta_{E_6}) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$
 - Six different values of mixing angle θ lead to observable Z' states: Z'_{ψ} , $Z'_{\rm N}$, Z'_{η} , Z'_{I} , $Z'_{\rm S}$ and Z'_{χ}
- SSM Benchmark Model
 - Z'_{SSM} assigned same Fermion couplings as SM Z Boson

Non-Resonant Dilepton Models

$$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} - \eta_{XY} \frac{F_I}{\Lambda^2} + \frac{F_C}{\Lambda^4}$$

Non-Resonant CI

- Quark and Lepton Compositeness
 - Λ defines Compositeness Scale
 - η_{xy} defines the chiral structure of interaction \rightarrow interference
 - Signal appears as broad excess above SM expectation

ADD Graviton

- Solution to Hierarchy Problem
 - Large extra dimensions
 - KK modes → almost continuous spectrum
 - M_S sets scale of quantum gravity
 - F is dependence on extra dimension assumptions

$$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} + \mathcal{F} \frac{F_I}{M_S^4} + \mathcal{F}^2 \frac{F_G}{M_S^8}$$

Dilepton CI Limits

RL Dest

RR Const RR Dest

Chiral Structure

RL Const

LL Dest LR Const

LR Dest

Dilepton Search Acc*Eff

High-Mass LFV Acc*Eff

Dijet Search Acc*Eff

b-jet Search b-tagging Efficiency

Dilepton PDF Systematic Uncertainty

- PDF Uncertainty becomes ever more dominant at high mass
 - → will not affect resonant dilepton limits
 - → but loose ability to differentiate between models in discovery scenario

Diboson Summary Limits

