Highlights of top quark cross-section measurements at ATLAS

Rafał Bielski

on behalf of the ATLAS Collaboration

European Research Council Established by the European Commission

Lake Louise Winter Institute 2017 20/02/2017

Introduction

Why top quark?

- ► The heaviest elementary particle → highest coupling to the Higgs boson and to possible new heavy particles
- Decays before hadronisation → allows to study bare quark properties
- ► Precision SM measurements → verification of the state-of-the-art theoretical calculations

What's new?

- ▶ LHC Run II → new energy, more and more data (\sqrt{s} = 13 TeV, $\int \mathcal{L} dt$ = 36 fb⁻¹)
- I will summarise final and preliminary results published since LLWI2016

Biggest challenges in measuring top cross sections:

- Signal modelling some of the new results already used to improve ATLAS MC tunes
- Jet energy scale and resolution, jet flavour tagging
- Background modelling other top processes, QCD multi-jet production, V+jets, VV

Overview of the new results

- Top quark decays nearly always into Wb, where the W can decay either leptonically or hadronically, defining different final states
- All new results (since LLWI2016) sorted by process and decay channel are listed in the table below (for links see the final slide)
- I will present the highlighted measurements in more detail

top cross section								
single top			ttW/ttZ					
Wt	t-channel							
dilepton	lepton+jets	dilepton		lepton+jets	all-hadronic	2/3/4 lepton		
		eµ	ee/µµ					
13 TeV inclusive	13 TeV inclusive	13 TeV inclusive 13 TeV differential 13 TeV extra jets 8 TeV extra jets 7,8,13 TeV tt/Z ratio	7,8 TeV differential	13 TeV differential 8 TeV differential	13 TeV differential	13 TeV inclusive		

Inclusive cross section measurements

All measurements agree with the latest predictions

Wt inclusive cross section

Motivation

- Testing the fundamental SM structure (sensitive to V_{tb})
- Senstive to new physics that can affect the Wtb vertex
- Process first observed in 8 TeV LHC data (inaccessible at the Tevatron due to the low cross section)

Event selection

- exactly two leptons (ee/μμ/eμ)
- at least one jet
- ► a set of simple kinematic cuts in $(m_{\ell\ell}, E_T^{miss})$ -plane minimising the Z+jets background contribution

Analysis strategy:

- Separate events into regions of jet and b-jet multiplicity
- BDT trained to discriminate between tt and Wt in signal and control regions
- profile-likelihood fit using MC templates for signal and background
- fitting binned BDT score in 1j1b, 2j1b and a single bin in 2j2b, extracting the signal strength μ_{Wt}

Wt inclusive cross section

The profile-likelihood fit constrains some of the systematic uncertainties, particularly the ones related to parton shower generator and $t\bar{t}$ I/FSR

$t\bar{t}$ differential cross section

dileptonic resolved

- ► lowest BR → low statistics
- Iow background → very clean
- difficulty in full event reconstruction due to two neutrinos
- use of the Neutrino Weighting algorithm

lepton+jets resolved

- middle-ground between the two other channels
- medium statistics, medium background level
- relatively easy full event reconstruction using final-state objects in the resolved selection
- the top-tagged large-R jet used directly as a top quark proxy in boosted

all-hadronic

- highest BR → large statistics
- high QCD multijet background
- top-tagged jets can be used directly as top-quark proxies
- boosted topologies allow to reach higher in top p_T
- more precise tt reconstruction thanks to the lack of neutrinos

Event selection:

2 leptons $(e^{\pm}\mu^{\mp})$, ≥2 jets (≥1 b-tagged)

Event selection:

1 lepton, \geq 4 jets (\geq 2 b-tagged) or 1 lepton, \geq 1 top-tagged large-R jet, \geq 1 b-jet

Event selection:

0 leptons, ${\geq}2$ top-tagged large-R jets, each containing a b-jet

Analysis strategy:

- Background estimates a mixture of data-driven techniques and simulated samples
- Correct for the detector effects ("unfolding")
 - Acceptance and efficiency corrections
 - ▷ Use migration matrices iterative Bayesian unfolding
 - Unfold to particle level use only objects constructed from stable final-state particles, avoiding extrapolation to parton level (i.e. correcting for parton showering)
 - Present either absolute or relative results (divided by total fiducial cross section)

Measured observables:

	$p_{\top}(t)$	y(t)	$p_{\scriptscriptstyle \top}(t\bar{t})$	$y(t\bar{t})$	$m(t\bar{t})$	$ \cos \theta^* $	$H_{\rm T}(t\bar{t})$	$y_{\rm B}(t\bar{t})$	$\Delta\phi(t_1,t_2)$	$\chi(t\bar{t})$	$ p_{\rm out}(t\bar{t}) $
еµ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
ℓ+jets resolved	√*	√*	\checkmark	\checkmark	\checkmark						
ℓ+jets boosted	√*	√*									
all-had	\checkmark^{\dagger}	\checkmark^{\dagger}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

* hadronically-decaying top only

t separately for the leading and sub-leading top-jet

ATLAS-CONE-2016-040

$t\bar{t}$ differential cross section – results

top quark p_{T} (keep in mind the different definitions)

Softer top p_T distribution wrt the prediction consistently seen in all channels

- Similar observations made also at 7 and 8 TeV (larger discrepancy with LO generators)
- Studies to improve the generator setup and tuning are ongoing, see ATL-PHYS-PUB-2016-020
- The all-hadronic measurement is so far the only one including 2016 data

arXiv:1612.05220 ATLAS-CONF-2016-040 ATLAS-CONF-2016-100

$t\bar{t}$ differential cross section – results

top quark rapidity (keep in mind the different definitions)

- No deviations seen in top rapidity
- All generators provide consistent predictions
- Observable sensitive to PDF

arXiv:1612.05220 ATLAS-CONF-2016-040 ATLAS-CONF-2016-100

$t\bar{t}$ differential cross section – results

All generators provide good agreement in wide kinematic range, but each one shows local disagreements in different parts of the phase-space. Work is needed in order to further improve the generators and the tuning.

arXiv:1612.05220 ATLAS-CONF-2016-040 ATLAS-CONF-2016-100

Summary

- ▶ The LHC is very capable of providing many millions of top-quark events
- Top quark cross section measurements provide precise test of the SM and can probe new physics
- No ATLAS results yet exploit the full 2015+2016 dataset (>10x larger than just 2015), so stay tuned for new measurements coming out soon!
- Given the available tī statistics, differential measurements are the baseline now

 double-differential will soon provide even higher sensitivity

Measurement	\sqrt{s} [TeV]	$\int \mathcal{L} dt \ [fb^{-1}]$	ATLAS code	Link
Wt inclusive t-channel single top inclusive	13 13	3.2 3.2	TOPQ-2015-16 TOPQ-2015-15	arXiv:1612.07231 arXiv:1609.03920
ttbar(emu) inclusive ttbar(emu) differential ttbar(emu) + extra jets ttbar(emu) + extra jets ttbar(emu) to Z(ee/mumu) ratio	13 13 13 8 7 / 8 / 13	3.2 3.2 3.2 20.2 4.6 / 20.2 / 3.2	TOPQ-2015-09 TOPQ-2016-04 TOPQ-2015-17 TOPQ-2015-04 STDM-2016-02	Phys. Lett. B761 (2016) 136 arXiv:1612.05220 arXiv:1610.09978 JHEP 09 (2016) 074 arXiv:1612.03636
ttbar(ee/mumu) differential	7/8	4.6 / 20.2	TOPQ-2015-07	Phys. Rev. D 94, 092003 (2016)
ttbar(l+jets) differential ttbar(l+jets) differential	13 8	3.2 20.2	CONF-2016-040 TOPQ-2015-06	ATLAS-CONF-2016-040 Eur. Phys. J. C76 (2016) 538
ttbar(allhad) differential	13	14.7	CONF-2016-100	ATLAS-CONF-2016-100
ttW and ttZ inclusive	13	3.2	TOPQ-2015-22	Eur. Phys. J. C (2017) 77:40

backup slides

Uncertainties in $t\bar{t}$ cross section

dilepton

all-hadronic (inclusive uncertainty)

Large- R jets	+18 / -15
Monte Carlo signal modelling	± 17
b-tagging	+13 / -12
Pileup	± 2.9
Luminosity	± 2.9
Small-R jets	± 1.0
Total Systematic Uncertainty	+29 / -24

$t\bar{t}$ modelling studies

A public note released in September on tuning $t\bar{t}$ generator setups: ATL-PHYS-PUB-2016-020

Aims:

- Describe the optimisation of new ATLAS setups with POWHEG+PYTHIA8 and POWHEG+HERWIG7 and compare different matrix element generators
- Parameters studied: h_{damp} (POWHEG), pTdef and pThard (PYTHIA8 main31), scale variations, KinematicsReconstructor:ReconstructionOption (HERWIG7)
- Using differential cross section measurements at 7, 8 and 13 TeV

Conclusions:

- Decided on the optimal choice of the studied parameters
- All relevant distributions in agreement within experimental uncertainties for POWHEG+PYTHIA8
- POWHEG+HERWIG7 shows very good top kinematics modelling (particularly top p_T), however fails to describe the additional radiation – more studies needed
- See a few plots in the next slide

tī modelling studies

