PHYSICS POTENTIAL OF THE Compact Linear Collider

Marko Petrič

On behalf of the CLICdp collaboration

Lake Louise, 25 February 2017

Marko Petrič (CERN) marko.petric@cern.ch

Physics Potential of the Compact Linear Collider (LLWI 2017)

CLIC Detector and Physics (CLICdp)

 Light-weight collaboration structure

> CLICdp: 29 institutes clicdp.cern.ch

Focus of CLIC-specific studies on:

Physics prospects and simulation studies Detector optimisation + R&D for CLIC

Timeline:

2012: CLICdp Collaboration was set up

2012: CLIC Conceptual Design Report published

2012→: Input to European strategy process 2015: New detector concept based on CDR findings 2016: Updated staging baseline 2016: Higgs physics at CLIC study completed

Generation of high current (100 A) drive beam with delay loop and combiner rings

Marko Petrič (CERN) marko.petric@cern.ch

3

Generate polarised electron beam

- Drive beam deceleration: Power Extraction and Transfer
- Two beam acceleration: Transfer RF from drive to main beam

Marko Petrič (CERN) marko.petric@cern.ch

Physics Potential of the Compact Linear Collider (LLWI 2017)

3

Marko Petrič (CERN) marko.petric@cern.ch

CLIC Accelerator

- Copper cavities operated at room temperature
- Gradient: 100 MV/m
- ▶ Deflection of particles by other bunch → beamstrahlung
- Energy loss determines the luminosity spectrum

\sqrt{s}	3 TeV
\mathcal{L} [cm ⁻² s ⁻¹]	5.9×10^{34}
Rep rate [Hz]	50
Duty cycle	0.00078%
$\sigma_{\mathbf{x},\mathbf{y}}$ [nm]	40 × 1
σ z [μm]	44

CLIC Energy Stages

- New CLIC staging baseline: CERN yellow report (CERN-2016-004)
- With "affordable" first stage at 380 GeV, focused on Higgs physics and top quark physics

Current scenario: Stage 1: 600 fb⁻¹ @ 350/380 GeV Precision SM Higgs and top physics Stage 2: 1.5 ab^{-1} @1.5 TeV: BSM physics, rare Higgs processes Stage 3: 3 ab^{-1} @ 3 TeV :

BSM physics, rare Higgs processes

Each stage corresponds to 5-7 years

 Geant4 based detector simulation and event reconstruction with event overlay

Studies carried out at three stages

\sqrt{S}	350 GeV	1.4TeV	3 TeV
$\int \frac{d\mathcal{L}}{ds'} ds'$	500fb^{-1}	$1.5 ab^{-1}$	$2 ab^{-1}$
$\sigma(\mathbf{e}^+\mathbf{e}^- \to \mathbf{ZH})$	133 fb	8 fb	2 fb
$\sigma(\mathbf{e}^+\mathbf{e}^- \to \mathbf{H}\nu_{\mathbf{e}}\overline{\nu}_{\mathbf{e}})$	34 fb	276 fb	477 fb
$\sigma(\mathbf{e}^+\mathbf{e}^- \to \mathbf{H}\mathbf{e}^+\mathbf{e}^-)$	7 fb	28 fb	48 fb
ZH events	68 000	20 000	11 000
$H\nu_e\overline{\nu}_e$ events	17000	370 000	830 000
He^+e^- events	3700	37000	84000

 $H_{\nu_e}\overline{\nu}_e$ increases ×1.8 for 80% e⁻ polarisation

High selection efficiencies !

Higgsstrahlung: $e^+e^- \rightarrow ZH$

- + Z $\rightarrow \ell^+ \ell^-$, Higgs identified from recoil
- model-independent determination of Higgs mass and g_{HZZ} (uncertainty ~ 2%)
- $\cdot Z \rightarrow q\overline{q}$
- selection ensures model-independent determination of g_{HZZ} (uncertainty ~ 0.9%)

WW Fusion: $e^+e^- \rightarrow H\nu_e\overline{\nu}_e$

- + $\sigma \propto \log s$, dominant > 450 GeV
- Access to H \to $c\overline{c}$ and rare Higgs decays like H \to $\mu^+\mu^-$

tt{H Production: $e^+e^- \rightarrow t\bar{t}H$

- Sensitive to top Yukawa coupling
- Cross section peaks @ 800 GeV, measured @ 1.4 TeV $\Delta(g_{Htt}) = 4.4\%$

Double Higgs Production

- e^+e^- → ZHH max. @ 600 GeV
- $e^+e^- \rightarrow HH\nu_e\overline{\nu}_e$
- Only 225(1200) HH $\nu_e \overline{\nu}_e$ events at 1.4(3) TeV
- High luminosity and high energy crucial
- Sensitive to Higgs self-coupling λ (~ 12%) and the quartic coupling g_{HHWW} (~ 3%)

Higgs Measurements Summary

arXiv:1608.07538

Lepton collider allows one to measure Higgs properties with high precision

- Model independent extraction only at lepton colliders
- Due to model independent measurement of g_{HZZ}
- ▶ Many couplings measured with ~ 1% precision
- Higgs width extracted with 5-3.5% precision
- Model dependent fits can achieve precision below 1%

Marko Petrič (CERN) marko.petric@cern.ch

Top Pair Production Threshold

- Measure tt production at different E_{CMS} around threshold
- Cross section distorted by ISR and Luminosity Spectrum
- Combined with selection efficiency and background contamination
- Precision on 1S mass: ~ 50 MeV
- Theoretical uncertainty ~ 10 MeV when transforming the measured 1S mass to the MS mass scheme
- Precision at the LHC limited to about 500 MeV
- Interesting top physics also above top threshold
- Top physics overview paper in preparation

Prospects for BSM Physics at CLIC

- Direct searches via pair-production up to kinematic limit ~ $\sqrt{s}/2$
- Precision measurements of new particle masses and couplings

In general O(1%) precision on masses and cross-sections
 Wider applicability: classify spin and quantum numbers

Marko Petrič (CERN) marko.petric@cern.ch

Prospects for BSM Physics at CLIC

Sleptons and Gauginos

 Slepton signature very clean: leptons and missing energy

 $\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \widetilde{\mu}_{\mathsf{R}}^{+}\widetilde{\mu}_{\mathsf{R}}^{-} \rightarrow \mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$

- Endpoint of spectra \rightarrow mass
- Slepton mass precision < 1% for sleptons below 1 TeV
- \blacktriangleright Chargino and neutralino \rightarrow 4 jets and E_{Miss}

$$\begin{split} \mathbf{e}^{+}\mathbf{e}^{-} &\rightarrow \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}\mathbf{W}^{+}\mathbf{W}^{-} \\ \mathbf{e}^{+}\mathbf{e}^{-} &\rightarrow \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}\mathbf{h}^{+}\mathbf{h}^{-} \\ \mathbf{e}^{+}\mathbf{e}^{-} &\rightarrow \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}\mathbf{Z}\mathbf{h} \end{split}$$

► Gaugino mass precision 1 – 1.5%

Prospects for BSM Physics at CLIC

Heavy Higgs Bosons

- ▶ Degenerate in mass → complex final state, heavy flavour jets $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$
- Separation requires heavy-flavour tagging (benchmark for detector optimisation)
- Precision of 0.3% on heavy Higgs masses

From Physics Aims to Detector Needs

Momentum resolution

Higgs recoil, $H \rightarrow \mu\mu$ or ℓ from BSM $\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

- ► Jet energy resolution W/Z/h di-jet separation $\frac{\sigma(E)}{E} \sim 3.5 - 5\%$ for E = 1000 - 50 GeV
- ► Impact parameter resolution b/c tagging, Higgs couplings $\sigma_{r\phi} = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}$ with a = 5 µm and b = 15 µm
- Large angular coverage down to 10 mrad lepton identification, very forward electron tagging

From Physics Aims to Detector Needs

Momentum resolution

Higgs recoil, $H \rightarrow \mu\mu$ or ℓ from BSM $\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

Jet energy resolution

W/Z/h di-jet separation $\frac{\sigma(E)}{E} \sim 3.5 - 5\%$ for E = 1000 - 50 GeV

- Impact parameter resolution b/c tagging, Higgs couplings $\sigma_{r\phi} = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}$ with a = 5 μ m and b = 15 μ m
- Large angular coverage down to 10 mrad lepton identification, very forward electron tagging

From Physics Aims to Detector Needs

Momentum resolution

Higgs recoil, $H \rightarrow \mu\mu$ or ℓ from BSM $\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

- Jet energy resolution
 W/Z/h di-jet separation

 ^{σ(E)}/_E ~ 3.5 − 5%
 for E = 1000 − 50 GeV
- Impact parameter resolution

b/c tagging, Higgs couplings $\sigma_{r\phi} = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}$ with a = 5 μ m and b = 15 μ m

 Large angular coverage down to 10 mrad lepton identification, very forward electron tagging

New CLIC Detector Concept

- ▶ R&D + simulation-based optimisation \rightarrow new detector concept
- New concept and simulation software chain being developed

- B Field of 4 T
- Vertex: 3 double layers
 - \blacktriangleright Single-hit accuracy 3 μm
 - $\blacktriangleright~0.2\% X_0$ per detection layer
 - Power pulsing \rightarrow 50 mW cm⁻²
- Silicon tracker: r = 1.5 m
- ECal (silicon + W) with 40 layers (22X₀)
- HCal (scintillator + Fe) with 60 layers (7.5λ)
- Precise timing for background
 - 10 ns stamping for tracks

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Summary and Conclusions

- Proton-proton and electron-positron colliders yield complementary information
- ► CLIC offers a wealth of accurate e⁺e⁻ physics measurements
- ▶ Offers an "affordable" stage @ 380 GeV with guaranteed physics
- Is upgradable up to 3 TeV
- Well-established physics programme
 - Precision Higgs physics, top physics, BSM physics...
- CLIC is one of the options for CERN after the HL-LHC, as are HE-LHC/FCC-hh/FCC-ee
- Very active R&D programme ongoing
- The CLIC technology has been demonstrated in large scale-tests
 - No show stoppers identified
 - CLIC can gear up towards construction within a few years

BACKUP

Marko Petrič (CERN) marko.petric@cern.ch

Physics Potential of the Compact Linear Collider (LLWI 2017)

CLIC cost estimate

- Preliminary estimate (scaled CDR) with room for improvement.
- New estimate will be provided for European Strategy Update

System	Value for 380 GeV [MCHF]
Main beam production	1245
Drive beam production	974
Two-beam accelerators	2038
Interaction region	132
Civil engineering & services	2112
Accelerator control	216
Total	6690

► Value for the CLIC accelerator at $\sqrt{s} = 380 \text{ GeV} (11.4 \text{ km site length})$

@ 380 GeV power consumption 252 MW

CLIC Layout

Marko Petrič (CERN) marko.petric@cern.ch