

Exotics at **BES**II

Giulio Mezzadri – INFN Ferrara

On behalf of the BESIII Collaboration

Lake Louise Winter Institute 02/25/2017 – Lake Louise

Outline

- Introduction
- BESIII and BEPCII
- Selected results in the charmonium spectrum
- X(1835) case: exotic in light hadron spectroscopy

6

Exotics in Naive Quark Model

- States predicted but difficult to observe (if they exist)
 - Glueballs
 - Tetraquarks
 - Pentaquarks
 - Hybrids

• States unpredicted but observed (XYZ)

Hybrid meson

Glueball

Exotics...(XYZ)

November Revolution in 1974

 J/ψ discovery \rightarrow Charmonium family

2003 situation

Exotics...(XYZ)

November Revolution in 1974

$J/\psi \text{ discovery} \to Charmonium \text{ family}$

Structure in $B^{\scriptscriptstyle +} \to K\pi\pi J/\psi$

Exotics...(XYZ)

November Revolution in 1974

$J/\psi \text{ discovery} \to Charmonium \text{ family}$

A new revolution above open charm threshold

XYZ states

- X states:
 - Neutral, $J^{pc} \neq 1^{--}$
 - X(3872) (PRL 91, 262001 2003), X(3940) (PRL 98, 082001, 2007)
- Y states:
 - Neutral $J^{pc} = 1^{-1}$
 - Y(4260) (PRD 86, 051102, 2012), Y(4360) (PRD 91,112007, 2015)
- Z states:
 - Charged, isospin triplet
 - Z(3900) (PRL 110, 252001, 2013), Z(4020) (PRL 111, 242001 (2013)),
 Z(4430) (PRL 100, 142001, 2008)

11

BESIII and **BEPCII**

BESIII and **BEPCII**

Selected results in the charmonium region

BESIII dataset in charmonium region

X(3872) in $e^+e^- \rightarrow \gamma \pi^+ \pi^- J/\psi$

Observed by BESIII: PRL 112 092001 (2014)

Narrow 1⁺⁺ state close to D⁰D^{0*} threshold

$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

Search for charmonium-like structures following the classical charmonium picture

Clear structure Y(4360) - Y(4660)

BESIII confirms the Y(4360) lineshape

Discovered by BESIII in

 $\pi J/\psi$ invariant mass in $e^+e^- \rightarrow \pi \pi J/\psi$ studies

PRL 110, 252001 (2013)

Charged charmonium-like structure

- Decays in $J/\psi \rightarrow$ must have a $c\bar{c}$ component
- Eletrically charged \rightarrow contains a ud

 $\sigma[e^+e^- \rightarrow \pi^+\pi^- J/\psi] = (62.9 \pm 1.9 \pm 3.7) \text{ pb } @4.26 \text{ GeV}$

$$\frac{\boldsymbol{\sigma}[e^+e^- \to \pi^{\pm}Zc(3900)^{\mp} \to \pi^+\pi^- J/\psi]}{\boldsymbol{\sigma}[e^+e^- \to \pi^+\pi^- J/\psi]} = (21.5 \pm 3.3 \pm 7.5)\%$$

Later confirmed by Belle and CLEO-c

Summary of the Z observed at BESIII

Each of them seems to have a $D^{(*)}D^*$ counterpart \rightarrow indication of nature of Z states?

X(1835): exotic in light hadron spectrum

2.6

PRL 95, 262001 (2005)

2.0

 $M(\pi^{+}\pi^{-}\eta^{\prime})$ (GeV/c²)

BESII

120

80

40

1.4

EVENTS/(20MeV/c²)

X(1835)

Discovered by BESII in J/ $\psi \rightarrow \gamma \eta' \pi + \pi -$ M = 1836.5 ± 3.0^{+5.6}_{-2.1} MeV/c² $\Gamma = 190 \pm 9^{+38}_{-36}$ MeV/c²

Confirmed by BESIII in

- Discovered by BESII in $J/\psi \rightarrow \gamma pp$
- Confirmed by BESIII $\rightarrow \gamma p \bar{p}$
 - Determined $J^{pc} = 0^{-+}$

X(1835)/X(pp) lineshape

Recently performed a study of the lineshape of $\eta' \pi \pi$ near the pp mass threshold

- Simultaneous fit of two η ' decay modes
- Simple Breit-Wigner description fails to fit the lineshape

X(1835)/X(pp) lineshape

Two equally good solutions can solve anomaly

PRL 117, 042002 (2016)

Flatté formula

• $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the summation of all other channels

Coherent sum of 2 BW

$$T = \frac{\sqrt{\rho_{out}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}}{M_2^2 - s - iM_2\Gamma_2}$$

Significance of narrow X(1870)
is larger than 7o
24

Outlook

- BESIII operates successfully from 2009
 - Many interesting results from a very broad physics program in τ -charm region
 - In 2016 BEPCII reached the world record luminosity for machine in this energy regime
- XYZ program in charmonium started in 2012
 - Unique opportunity to produce and study XYZ states
 - A new dedicated data taking is taking place in this year.
- X(1835)/X(pp) represent exotic in light hadron spectra
 - Interesting nature of those states would require a larger data samples
- Don't miss Zhen Gao's talk on results of $e^+e^- \rightarrow K^+K^-$ measurements!

Τ Η A N Κ S

Additional Material

BESIII Collaboration

BESIII Collaboration

On exotic nature of XYZ states

Underlying naive logic on defining those states:

- X: extremely narrow resonances that decay in charmonia above DD thresholds
- Y: produced only via ISR or directly, no other observation in decay chains
- Z: Charged charmonia

Some exceptions:

- X observed at in J/yf have larger witdh (few tenths MeV)
- Y(3940) in B decay at BELLE (arxiv:0711.2047[hep-ex])
- Z(3930) observed in gamma gamma is now identified as $chi_{20}c2(2P)_{30}$

BESIII Complete Dataset

2009: 106M $\psi(2S)$ 225M J/ψ 2010: 975 pb⁻¹ at $\psi(3770)$ 2011: 2.9 fb⁻¹ at $\psi(3770)$ (total) 482 pb⁻¹ at **4.01 GeV** 2012: 0.45B ψ (2S) (total) 1.3B J/ψ (total) 2013: 1092 pb⁻¹ at 4.23 GeV 826 pb⁻¹ at **4.26 GeV** 540 pb⁻¹ at **4.36 GeV** ~50 pb⁻¹ at 3.81, 3.90, 4.09, 4.19, 4.21, 4.22, 4.245, 4.31, 4.39, 4.42 GeV 2014: 1029 pb⁻¹ at **4.42 GeV** 110 pb-1 at 4.47 GeV 110 pb⁻¹ at 4.53 GeV 48 pb⁻¹ at 4.575 GeV 567 pb⁻¹ at 4.6 GeV 0.8 fb⁻¹ **R-scan** from 3.85 to 4.59 GeV (104 points) 2015: **R-scan** from 2-3 GeV + 2.175 GeV data 2016: \sim 3fb⁻¹ at 4.18 GeV (for **D**_s) JUST COMPLETED 2017: $\sim 10 \times 500 \text{ pb}^{-1}$ between **4.19** and **4.30 GeV**

2017 SUBJECT TO CHANGE, OF COURSE!

X(1835)/X(pp) lineshape

The state around 1.85 GeV/ c^2	
\mathcal{M} (MeV/ c^2)	$1638.0 \begin{array}{c} ^{+121.9}_{-121.9} \begin{array}{c} ^{+127.8}_{-254.3} \end{array}$
$g_0^2 ((\text{GeV}/c^2)^2)$	$93.7 \begin{array}{c} +35.4 \\ -35.4 \\ -43.9 \end{array}$
$\mathbf{g}_{p\overline{p}}^2/\mathbf{g}_0^2$	$2.31_{-0.37}^{+0.37}{}^{+0.83}_{-0.60}$
$M_{pole} (MeV/c^2) *$	1909.5 ^{+15.9} ^{+9.4} -15.9 -27.5
$\Gamma_{\rm pole} ({\rm MeV}/c^2) ^*$	$273.5^{+21.4}_{-21.4}{}^{+6.1}_{-64.0}$
Branching Ratio	$(3.93^{+0.38}_{-0.38}{}^{+0.31}_{-0.84}) \times 10^{-4}$

* The pole nearest to the $p\bar{p}$ mass threshold

X(1835)	
M (MeV/ <i>c</i> ²)	1825.3 +2.4 +17.3 -2.4 -2.4
Γ (MeV/ c^2)	$245.2 \begin{array}{c} ^{+14.2}_{-12.6} \begin{array}{c} ^{+4.6}_{-9.6} \end{array}$
B.R. (constructive interference)	$(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72^{+0.21}_{-0.21}{}^{+0.18}_{-0.35}) \times 10^{-4}$
X(1870)	
X(1870) M (MeV/ <i>c</i> ²)	1870.2 ^{+2.2} +2.3 -2.3 -0.7
X(1870) M (MeV/c ²) Γ (MeV/c ²)	1870.2 ^{+2.2} ^{+2.3} _{-2.3} _{-0.7} 13.0 ^{+7.1} _{-5.5} _{-3.8}
X(1870) $M (MeV/c^2)$ $\Gamma (MeV/c^2)$ B.R. (constructive interference)	$1870.2 \stackrel{+2.2}{_{-2.3}}\stackrel{+2.3}{_{-0.7}}$ $13.0 \stackrel{+7.1}{_{-5.5}}\stackrel{+2.1}{_{-3.8}}$ $(2.03 \stackrel{+0.12}{_{-0.12}}\stackrel{+0.43}{_{-0.70}}) \times 10^{-7}$