

Heavy Quark Production

Michael Alexander

University of Glasgow

On behalf of the LHCb collaboration

Lake Louise Winter Institute 2017/02/25

Introduction

- ${\rm D}$ meson production
- ${\rm B}\xspace$ meson production

 $J\!/\!\psi$ production

 $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

Introduction

- D meson production
- B meson production
- J/ψ production
- $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

Introduction

Production measurements test QCD

- Perturbative, non-perturbative & the region in between.
- Comparison of various models what mechanisms are dominant, what approximations are good.
- Sensitive to parton density functions (PDFs), & particularly gluon density function.
- Verifies prediction of yields & sensitivities at different energies for future experiments.

LHCb has unique coverage

 Acceptance 2 < η < 5 - can probe both low and high parton momentum fraction (Bjorken x).

M. Alexander (University of Glasgow)

Introduction

Cross section measurements: count & correct

Differential cross section for production of X in bin i of variable k:

$$\frac{\mathrm{d}\sigma_i(X)}{\mathrm{d}k} = \frac{N_{\mathrm{obs}}(X \to f)}{\epsilon_i \,\Delta k_i \,\mathcal{B}(X \to f) \,\mathcal{L}}$$

 $N_{\rm obs}(X \to f) \equiv$ number of observed signal decays to final state f. $\epsilon_i \equiv$ detection & selection efficiency in bin i.

$$\Delta k_i \equiv$$
 width of bin *i*.

 $\mathcal{B}(X \to f) \equiv$ branching fraction of $X \to f$.

 $\mathcal{L}\equiv$ integrated luminosity. Generally limiting systematic - LHCb achieves precision of few %.

M. Alexander (University of Glasgow)

Introduction

Efficiency factorisation

Total efficiency

 $\epsilon \equiv \epsilon_{\rm geom} \epsilon_{\rm reco} \epsilon_{\rm evt.\, sel} \epsilon_{\rm cand.\, sel}$

 $\epsilon_{\text{geom}} \equiv$ geometric acceptance of detector.

 $\epsilon_{\rm reco}\equiv$ reconstruction efficiency.

 $\epsilon_{\rm evt.\,sel} \equiv$ event selection efficiency (eg, event multiplicity).

 $\epsilon_{\text{cand.sel}} \equiv \text{candidate selection efficiency (PID & kinematic criteria)}.$

Evaluated in each kinematic bin with a variety of techniques: data driven where possible (tag & probe, calibration samples) and from simulation (weighted to match real data).

Generally a dominant source of systematic uncertainty.

M. Alexander (University of Glasgow)

Introduction

$\ensuremath{\mathrm{D}}$ meson production

B meson production

 J/ψ production

 $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

Heavy Quark Production at LHCb

Lake Louise 2017/02/25 8 / 25

Measure prompt D meson production

- Use $8.60 \pm 0.33 \text{ pb}^{-1}$ of data at centre-of-mass energy 5 TeV.
- Same analysis strategy as previous measurements at 7 & 13 TeV.
- Count yields of $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$, $D^+_{c} \rightarrow \phi(K^+K^-)\pi^+$, & $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$.
- Fit m(D) to discriminate combinatorial backgrounds (use $\Delta m \equiv m(K^{-}\pi^{+}\pi^{+}) - m(K^{-}\pi^{+})$ for D*+).
- Fit $\ln(\chi^2_{IP})$ to distinguish prompt D mesons from those from B decays. $\chi^2_{\rm IP} \equiv \chi^2$ of hypothesis that D originates from the primary vertex.

M. Alexander (University of Glasgow)

Cross sections at 5 $\,\mathrm{TeV}$ agree with predictions

For
$$1 < p_T[\text{GeV}] < 8$$
 & 2.0 $< y < 4.5$ finds

$$\begin{split} &\sigma(\mathrm{pp}\to\mathrm{D}^0X)=1190\pm3\pm64\,\mu\mathrm{b},\\ &\sigma(\mathrm{pp}\to\mathrm{D}^+X)=456\pm3\pm34\,\mu\mathrm{b},\\ &\sigma(\mathrm{pp}\to\mathrm{D}^+_sX)=195\pm4\pm19\,\mu\mathrm{b},\\ &\sigma(\mathrm{pp}\to\mathrm{D}^{*+}X)=467\pm6\pm40\,\mu\mathrm{b}. \end{split}$$

Correcting for hadronisation fractions, for $0 < p_T[\text{GeV}] < 8 \& 2.0 < y < 4.5$, using D^0 and D^+ measurements yields

$$\sigma(\mathrm{pp} \rightarrow c \overline{c} X) = 1395 \pm 5 \pm 80 \pm 67 \, \mu\mathrm{b},$$

with the last uncertainty from hadronisation fractions.

M. Alexander (University of Glasgow)

D meson production

arXiv:1610.02230, Nucl. Phys. B871 (2013) 1 JHEP 03 (2016) 159, JHEP 09 (2016) 013

General agreement with predictions at several energies

7 TeV

 D^0 production cross section vs $p_T \& \eta$.

M. Alexander (University of Glasgow)

Introduction

D meson production

${\rm B}\xspace$ meson production

J/ψ production

 $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

Count semileptonic B decays

- Use 284.10 \pm 4.86 pb⁻¹ at 7 TeV & 4.60 \pm 0.18 pb⁻¹ at 13 TeV.
- Count yields of $\mathrm{B}^0 \to \mathrm{D}^0 \mu X$, $\mathrm{B}^+ \to \mathrm{D}^+ \mu X$, $\mathrm{B}^0_s \to \mathrm{D}^+_s \mu X$ & $\Lambda_b \to \Lambda_c \mu X$.
- Fit *m*(D) to discriminate combinatorial backgrounds, & ln(IP_D) to distinguish prompt charm backgrounds.
- $IP_D \equiv impact parameter of D meson.$

M. Alexander (University of Glasgow)

Differential cross sections vs theory

- Summing cross sections over B species gives, for $2 < \eta < 5$ $\sigma(pp \rightarrow H_b X) = 72.0 \pm 0.3 \pm 6.8 \,\mu b$ at 7 TeV, and $\sigma(pp \rightarrow H_b X) = 154.3 \pm 1.5 \pm 14.3 \,\mu b$ at 13 TeV.
- Ratio $2.14 \pm 0.02 \pm 0.13$ agrees with prediction $1.79^{+0.21}_{-0.15}$.
- More results soon in other channels, eg ${\rm B}^+ \to J\!/\!\psi\,{\rm K}^+.$

Introduction

- D meson production
- B meson production

$J\!/\!\psi$ production

 $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

$J\!/\!\psi\,$ pair production discriminates various production methods

- Use $279 \pm 11 \text{ pb}^{-1}$ data at 13 TeV.
- Reconstruct pairs of $J/\psi \to \mu^+\mu^-$ that form a good common vertex.
- Simultaneous fit to $J\!/\!\psi\,$ masses to discriminate combinatorial background.

M. Alexander (University of Glasgow)

Large double parton scattering contribution favoured

- For 2 < y < 4.5 & $p_T < 10$ GeV, find $\sigma(\text{pp} \rightarrow J/\psi J/\psi X) = 13.5 \pm 0.9 \pm 0.8$ nb.
- Total cross section depends strongly on $J\!/\psi\,$ polarisation, shape of differential cross sections less so.
- No single model describes the data adequately.
- Fit with DPS + SPS models yields DPS fraction in the region \sim 85 %.

M. Alexander (University of Glasgow)

J/ψ isolation also discriminates models

- Use $297\pm11\,\text{pb}^{-1}$ data at 13 $\,\mathrm{TeV}.$
- Select $J\!/\psi \to \mu^+\mu^-$ candidates & build jets around them.
- Fit J/ ψ mass to discriminate combinatorial background & projection of J/ ψ decay time onto beam line (\tilde{t}) to distinguish prompt J/ ψ from those from B decays.
- Measure cross sections in bins of $z(J/\psi) \equiv p_T(J/\psi)/p_T(\text{jet})$.
- Direct production model favours large $z(J/\psi)$ while parton shower model favours smaller $z(J/\psi)$.

M. Alexander (University of Glasgow)

- J/ψ from B well modelled in Pythia 8.
- Prompt J/ψ disagrees with direct production model in Pythia 8.
- May relate to long standing discrepancy with polarisation predictions direct production predicts large polarisation while little is found in experimental data.

M. Alexander (University of Glasgow)

Introduction

- D meson production
- B meson production

J/ψ production

 $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

Heavy Quark Production at LHCb

Lake Louise 2017/02/25 20 / 25

Heavy flavour jets test pQCD

• Use $1.98 \pm 0.02 \text{ fb}^{-1}$ at 8 TeV.

- Select events with two heavy flavour tagged jets & a high momentum, isolated lepton.
- Train MVAs to discriminate $t\bar{t}$ events from W + $b\bar{b}$ (uGB), & b jets from c jets.
- Fit dijet mass distribution (m_{jj}) & MVA responses to discriminate backgrounds (mainly Z & QCD multi-jet), & three classes of signal.
- Sensitive to PDFs at high & low Bjorken x.

M. Alexander (University of Glasgow)

Cross sections agree with predictions

• Signal significances 4.9 σ for $t\bar{t}$, 7.1 σ for W⁺ + $b\bar{b}$, 5.6 σ for W⁻ + $b\bar{b}$, 4.7 σ for W⁺ + $c\bar{c}$, 2.5 σ for W⁻ + $c\bar{c}$.

• Study of $W + c\bar{c}$ first of its kind.

M. Alexander (University of Glasgow)

Introduction

- D meson production
- B meson production
- J/ψ production
- $t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production

Conclusions

M. Alexander (University of Glasgow)

Heavy Quark Production at LHCb

Lake Louise 2017/02/25 23 / 25

Conclusions

- Rich production measurement programme at LHCb.
- Many confirmations of theory predictions; some intriguing discrepancies.
- More B production measurements coming soon $(B^+\!\to J\!/\!\psi\,K^+).$
- $J\!/\!\psi$ pair production favours large double parton scattering contribution.
- Prompt $J\!/\!\psi$ isolation disfavours direct production mechanism.
- First measurement of $W + c\bar{c}$ cross sections.
- Great scope for further investigation at LHCb.

Backup

Heavy Quark Production at LHCb

Lake Louise 2017/02/25 26 / 25

Charm cross section systematics at 5 $\,\mathrm{TeV}$

Table 2: Systematic uncertainties expressed as fractions of the cross-section measurements, in percent. Uncertainties that are computed bin-by-bin are expressed as ranges giving the minimum to maximum values. Ranges for the correlations between p_{T} -y bins and between modes are also given, expressed in percent.

	Uncertainties (%)			Correlations (%)		
	D^0	D^+	D_s^+	D^{*+}	Bins	Modes
Luminosity		3	.9		100	100
Tracking	3–5	5 - 17	4–18	5 - 20	90-100	90-100
Branching fractions	1.2	2.1	5.8	1.5	100	0 - 95
Simulation sample size	2 - 24	4 - 55	3 - 55	2 - 21	-	-
Simulation modelling	2	1	1	1	-	-
PID sample size	0–2	0–1	0 - 2	0-1	0-100	0-100
PID binning	0 - 44	0–10	0-20	0 - 15	100	100
PDF shapes	1–6	1 - 5	1 - 2	1–2	-	-

M. Alexander (University of Glasgow)

Heavy Quark Production at LHCb

Lake Louise 2017/02/25 27 / 25

arXiv:1610.02230 JHEP 03 (2016) 159 JHEP 09 (2016) 013

Charm cross section ratio

- Some experimental & theory uncertainties cancel.
- Ratio of cross sections at 13 TeV to 5 TeV (left) agree better with predictions than previously measured ratios of 13 TeV to 7 TeV (right), which are consistently high.

M. Alexander (University of Glasgow)

B cross section systematics

Table 4: Systematic uncertainties independent of η on the $pp\to H_bX$ cross-sections at 7 and 13 TeV and their ratio.

Source	$7 { m TeV}$	$13 \mathrm{TeV}$	Ratio 13/7
Luminosity	1.7%	3.9%	3.8%
Tracking efficiency	3.8%	4.3%	2.5%
b semileptonic \mathcal{B}	2.1%	2.1%	0
Charm hadron \mathcal{B}	2.6%	2.6%	0
b decay cocktail	1.0%	1.0%	0
Ignoring b cross-feeds	1.0%	1.0%	0
Background	0.2%	0.3%	0
$b \rightarrow u$ decays	0.3%	0.3%	0
δ	2.0%	2.0%	0.2%
Total	5.9%	7.1%	4.6%

B differential cross section ratio

Discrepancy at low η under investigation.

M. Alexander (University of Glasgow)

Heavy Quark Production at LHCb

Lake Louise 2017/02/25 30 / 25

$J\!/\!\psi\,$ pair production systematics

Table 1: Summary of the systematic uncertainties on the measurement of the $J\!/\psi\,$ pair production cross-section.

Source	Uncertainty[%]
Signal shape	1.8
Data/simulation difference	1.0
Tracking efficiency	0.8×4
Muon PID efficiency	2.3
Trigger efficiency	1.1
Fraction of J/ψ from b-hadron candidates	1.0
${\cal B}(J\!/\!\psi ightarrow \mu^+ \mu^-)$	1.1
Luminosity	3.9
Total	6.2

J/ψ jet production systematics

Source	Systematic		
Reconstruction efficiency	2 %		
Trigger efficiency	2-5 %		
Offline selection efficiency	0-2 %		
Mass fit model	1 %		
$ ilde{t}$ fit model	1 %		
Background model	-		
PV misassociation	-		
Detector response	0.001-0.014 (absolute)		
Detector response unfolding	0.01 (absolute)		
Fragmentation model	-		
Total	0.010-0.015 (absolute)		

Reconstruction efficiency includes unknown J/ψ polarisation.

M. Alexander (University of Glasgow) Heavy Quark Production at LHCb

All fit variables for μ^+

All fit variables for e^+

$t\bar{t}$, W + $b\bar{b}$ & W + $c\bar{c}$ production systematics

Source	Systematic
Luminosity	1.16 %
Event selection efficiency	2 %
Reconstruction & trigger efficiencies	1.0-5.0 %
Lepton kinematic efficiency	-
Heavy flavour tagging efficiency	5-10 %
Flavour dependence of jet energy scale	2 %
Effect of ghost tracks (jet energy scale)	1.2 %
Momentum resolution (jet energy scale)	1 %
Data/MC differences (jet energy scale)	1 %
Jet reconstruction & selection efficiency	2 %
Background normalisation predictions	3-10 %
Finite MC sample size	1-7 %
Correlations in fit variables	10 %