

Josué Molina

El Zamorano University, Honduras On behalf of the LHCb Collaboration

Lake Louise Winter Institute, 19 – 25 February 2017

The possibility of mesons and baryons with other than $q\overline{q}$ or qqq configurations it was admitted since the introduction of the quark model.

- These could be molecular bound states with mesons, tetraquarks, pentaquarks, or hybrids.
- Strong candidates for these exotic hadrons have been observed with contributions from multiple experiments.
- In this talk I will review some of the most relevant results from LHCb.

Tetraquarks studies

3/27

- Exotic signature:
 - Decay to charmonium (*c* pair content)
 - Electrically charged (needs at least 2 more light quarks)
- Observed by Belle in $\Psi(2S)\pi^+$ in $B^0 \rightarrow \Psi(2S)K^+\pi^$ decays [PRL100, 142001 (2008)]
- Not confirmed by BaBar (but not excluded) [PRD 79, 112001 (2009)]
- Full 4D amplitude analysis by Belle [PRD 88 (2013) 074026]

Z(4430)⁻ confirmation at LHCb parageneeue

- Sample of $\approx 25k \ B^0 \rightarrow \Psi(2S)K^+\pi^-$ candidates
- $\,\approx$ 4% of combinatorial background
- Used 4D amplitude analysis (Isobar approach)

Z(4430)⁻ confirmation at LHCb (PBL 12) (20)

- The Z(4430) it has a BW shape in m(Ψ(2S)π⁻) mass, but is basically flat in m(K⁺π⁻).
- Poor fit with only K* resonances (brown dashed line)
- Including Z(4430) clearly improves the fit

- M: 4475±7 MeV
- Γ: 172±13 MeV
- J^P = 1⁺
- Argand diagram shows a behavior characteristic of a resonance.

X(4140) in $B^+ o J/\Psi \phi K^+$ [PRL 116 (2017) 022006] 6 (PRD ESCONDARS

- Reported by CDF (2008 & 20011), Belle (2009), D0 (2013), CMS (2013), BaBar (2013) & LHCb (2011)
- X(4140) structure could be molecular, tetraquark, hybrid state or rescattering effect
- Run1 sample: Nsignal = 4289 ± 151 ($23 \pm 6\%$ background)

LHCb

- All previous results based in 1-D projections
- LHCb performed Amplitude Analysis for the first time

X(4140) in $B^+ o J/\Psi \phi K^+$ (prelimits (2017) 022005) is (predistributed of the second strength of the second s

• 6D fit including K* resonances + NR background

Masses and widths not constrained

• K* resonances alone don't describe well the data

- Fits including exotics
- Add X and Z⁺ components with various quantum numbers
- Z⁺ components improve fit marginally
- Found Two 1⁺⁺ and two 0⁺⁺ states with large significance

Contri-	Sign.		Fit results	
bution	or Ref.	M_0 [MeV]	Γ_0 [MeV]	FF %
All $X(1^+)$				$16\pm3 + \frac{6}{2}$
X(4140)	8.4σ	$4146.5 \pm 4.5 {}^{+4.6}_{-2.8}$	$83\pm 21\ ^{+21}_{-14}$	$13.0 \pm 3.2 {}^{+4.7}_{-2.0}$
ave.	Table 1	4147.1 ± 2.4	15.7 ± 6.3	
X(4274)	6.0σ	$4273.3 \pm 8.3 \substack{+17.2 \\ -3.6}$	$56\pm11^{+8}_{-11}$	$7.1 \pm 2.5 {}^{+3.5}_{-2.4}$
CDF	[26]	$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32^{+22}_{-15} \pm 8$	
CMS	[23]	$4313.8 {\pm} 5.3 {\pm} 7.3$	$38^{+30}_{-15} \pm 16$	
All $X(0^+$)			$28\pm 5\pm 7$
$NR_{J/\psi \phi}$	6.4σ			46 ± 11 $^{+11}_{-21}$
X(4500)	6.1σ	$4506 \pm 11^{+12}_{-15}$	$92\pm21_{-20}^{+21}$	$6.6 \pm 2.4 {}^{+3.5}_{-2.3}$
X(4700)	5.6σ	$4704 \pm 10^{+14}_{-24}$	$120\pm31_{-33}^{+42}$	$12\pm 5 \pm \frac{9}{5}$

Pentaquarks studies

- Decay mode, not observed before, found to have large rates and low background
- Diagram a) expected to be dominated by $\Lambda^* \to K^- p$
- It could also have exotic contributions, as indicated by the diagram b)

$\Lambda^0_b ightarrow J/\Psi p K^-$ [PRL 115 (2015) 072001]

Clean signal of 26k candidates with 5.4% background $(\pm 2\sigma)$ in Run1 data sample (3 fb^{-1})

Exotic Spectroscopy

ZAMORANO

Amplitude model:

- 6-D amplitude fit
- · two exotic states required to obtain an adequate fit

 Interference between two P_c of opposite parity required to explain the P_c decay angular distribution

Combined significance $>15\sigma$

Real and imaginary part of the amplitude determined independently in 6 bins between $M \pm \Gamma$

- The *P_c*(4450) amplitude shows a phase variation consistent with what expected for a Breit-Wigner resonance
- Not conclusive for $P_c(4380)$ (more statistics needed)

 $\Lambda^0_b o J/\Psi
ho K^2$

Search for exotic in $\Lambda^0_b o J/\Psi p \pi^-$ results are accompanied.

Cabibbo-suppressed Λ_b^0 (observed by LHCb [JHEP 1407 (2014) 103]) decays to baryonic exotic resonances

Observing the same P_c^+ states in a different decay mode could indicate they are really resonances and not some kinematical effects [arXiv:1512.01959]

 $N_{\rm s}=1885\pm50$

Perform 6-D amplitude analysis fit to interfering amplitudes

Include in the fit:

- All known N* (Extended)
- Only well motivated (Reduced)
- Sample size limited: fix *P_c* and *Z_c* parameters when testing if their amplitudes are required
- The m(pπ⁻) projection is adequately described by fits with N^{*} only
- Exotic components seem not required

State	J^{p}	Mass (MeV)	Width (MeV)	RM	\mathbf{EM}	
NR $p\pi$	$1/2^{-}$	-	-	4	4	
N(1440)	$1/2^+$	1430	350	3	4	
N(1520)	$3/2^{-}$	1515	115	3	3	
N(1535)	$1/2^{-}$	1535	150	4	4	
N(1650)	$1/2^{-}$	1655	140	1	4	
N(1675)	$5/2^{-}$	1675	150	3	5	
N(1680)	$5/2^+$	1685	130	-	3	
N(1700)	$3/2^{-}$	1700	150	-	3	
N(1710)	$1/2^+$	1710	100	-	4	
N(1720)	$3/2^{+}$	1720	250	3	5	
N(1875)	$3/2^{-}$	1875	250	-	3	
N(1900)	$3/2^+$	1900	200	-	3	
N(2190)	$7/2^{-}$	2190	500	-	3	
N(2300)	$1/2^{+}$	2300	340	-	3	
N(2570)	$5/2^{-}$	2570	250	-	3	
Free para	Free parameters 40					

Fits including exotics

Exotic components are required for an acceptable fit in all regions of variable space

States	Fit fraction (%
$P_c(4380)^+$	$5.1 \pm 1.5^{+2.1}_{-1.6}$
$P_c(4450)^+$	$1.6^{+0.8+0.6}_{-0.6-0.5}$
$Z_c(4200)^-$	$7.7 \pm 2.8^{+3.4}_{-4.0}$

None has individually large significance (AA limited by sample size)

I have reviewed a few selected recent results on spectroscopy of exotic states:

- Tetraquarks
 - Observation of exotic X & Z states
- Pentaquarks
 - Observation of $P_c(4450)^{\pm}$ and $P_c(4380)^{\pm} \rightarrow J/\Psi p$ in $\Lambda^0_b \rightarrow J/\Psi p K^-$
 - Evidence for exotic hadrons in $\Lambda_b^0 \rightarrow J/\Psi p \pi^-$
 - · Limited by statistics
- LHCb is providing a wealth of results on hadron physics (still a lot to understand)
- Still a lot of new data to be analized!

Greetings from Honduras!!!

Come visit us!!!

El Zamorano

Honduras is at the heart of America and El Zamorano University is at the heart of Honduras

Zamorano is an international university that offers young people from different countries and backgrounds the opportunity to become professionals - leaders - with skills and values, capable of transforming companies and organizations that respond to current challenges in Latin America and the world.

Backup

23/27

The LHCb Detector

A one-arm spectrometer detecting *B*- and *D*-mesons after p - p collisions [Int.J.Mod.Phys. A30 (2015) no.07, 1530022]

- Flavor PhysicsRare decays
- (Exotic) spectroscopy

LHCb Detectors:

- VELO
- **2** TT Stations
- 3 Magnet
- **4** RICH
- **5** Calorimeters
- 6 Muon Station

Reminder: Kinematics of a three-body decay

$$M \rightarrow 1 + 2 + 3$$

Invariants:

•
$$s = P^2 = M^2$$

•
$$s_{12} = (p_1 + p_2)^2$$

• $s_{23} = (p_2 + p_3)^2$

•
$$s_{13} = (p_3 + p_1)^2$$

Invariants:

- $\vec{p_i}$: 9 observables
- 4-momentum (E, \vec{p}) conservation $P = \sum_{i=1}^{3} p_i$
- spinless particles: isotropy
- 2 variables to describe the decay

$$B^0 \rightarrow \Psi(2S)\pi^+K^- \Longrightarrow (S_{12}, S_{13})$$

Exotic Spectroscopy

Isobar Model in $B^0 \rightarrow \Psi(2S)\pi^+K^-$: coherent sum of interfering resonances

 $\mathcal{M} = a_{NR} e^{i\delta_{NR}} + \sum_{i} a_{i} e^{i\delta_{i}} \mathcal{A}_{i}(s_{12}, s_{13})$ $\mathcal{A}_{i} = \underset{f_{D}F_{R_{i}}}{F_{D}F_{R_{i}}} \times \underset{angular fuction}{\mathcal{M}_{i}^{J}} \times \underset{lineshape-propagator}{\mathcal{B}\mathcal{W}_{i}}$ $\underset{a_{NR}}{\mathcal{B}}, \delta_{NR} \text{ assumed to be constant}$

 $\Box \text{ Example } B^0 \to \Psi(2S)\pi^-K^+:$ $\Box B^0 \to \Psi(2S) K^{*0}, K^{*0} \to K^+\pi^-$

Isobar Model formalism (Breit-Wigner)

 $z = (p^*d)^2$ and $z_0 = (p_0^*d)^2$,

$$\mathcal{BW}_{i} = \frac{1}{m_{r}^{2} - s_{12} - im_{r}\Gamma(\sqrt{s_{12}})}$$

$$(\sqrt{s_{12}}) = \Gamma_{r} \left(\frac{p^{*}}{p_{0}^{*}}\right)^{2J+1} \frac{m_{r}}{\sqrt{s_{12}}} \left(\frac{F_{R,D}^{J}(z)}{F_{R,D}^{J}(z_{0})}\right)^{2}$$

$$p^{*}: \text{ decay momentum in } \mathbf{12}$$
rest frame.

 p_0^* : p^* calculated at m_r .

Circular trajectory in complex plane & phase change of 180⁰ across the pole is characteristic of resonance

Exotic Spectroscopy

Josué Molina