Selected highlights from the ANTARES neutrino telescope

Lake Louise Winter Institute Lake Louise, Canada February 2017

Timothée Grégoire on behalf of the ANTARES collaboration

Detection principle

Two type of events

- <u>Tracks</u>: CC $\nu_{\mu}/\nu_{\tau} \rightarrow \mu$
- Interaction can occur far from the detector
 - → Larger effective volume
- Median angular resolution:
 - → <**0.4**° above 10 TeV

- Electronic or hadronic showers:
 - \rightarrow CC v_e/v_{τ} and NC
- **Contained** in the detector
 - → Better energy estimation
- Median angular resolution:

Search for neutrino Point-like Sources

- 9 years of ANTARES data using tracks and showers
 - → All flavour
- Use of a likelihood ratio in three ways:
 - → Full sky search
 - → Search around the **galactic plane**
 - → Candidate list search
- No significant excess found
- Plan to combine with IceCube

Search for neutrino Point-like Sources

Astrophys.J. 823 (2016) no.1, 65

- Combined search with IceCube
 - → ANTARES: 6 years; IceCube: 4 years of data
- Southern hemisphere
- No significant excess found

Search for neutrino Diffuse flux

- All sky neutrino search
- Look for excess above a certain energy threshold
- 9 (7) years of data for tracks (showers)

	Background expectation	Signal expectation	Number of events measured
Tracks	13±3	3	19
Showers	5±2	1.5	7

Galactic Plane analysis

All flavour

- Testing KRAγ model (Astroparticle Physics 55 (2014) 37-50)
- Phenomenological model of **Cosmic Ray diffusion** in the Galaxy
 - → Radial dependence of the slope of the diffusion coefficient and the advective wind
- 9 years of ANTARES Data
- Predicts the v energy and spatial distribution on the sky

Galactic Plane analysis

All flavour

Search method:

• How likely our data contain some signal with the KRAγ characteristics?

$$L_{sig+bg} = \prod_{evt} \left[n_{sig} \cdot pdf_{sig} (\alpha^{evt}, \delta^{evt}, E^{evt}) + n_{bg} \cdot pdf_{bg} (z^{evt}, \delta^{evt}, E^{evt}) \right]$$

- Weight this against the likelihood to have only background: likelihood ratio
- **Fit** the **number of signal** events by maximising the likelihood ratio

Results:

- Sensitivity: median Upper Limit (90% CL) = 1.1 $\Phi_{KRA\gamma}$
- Upper Limit = 1.3 Φ_{KRAy}
- P-value = 0.5

To come:

Combination with IceCube

The multi-messenger program

- Increase the detector sensitivity (suppression of the uncorrelated background)
- Better understand the related physics mechanisms

Gravitational wave follow-up

Track channel only

Physical Review D 93 (2016) n°12

- Joint analysis with IceCube
- $E_{\nu,\text{tot}}^{ul} = 5.4 \cdot 10^{51} 1.3 \cdot 10^{54} \text{ erg}$
- $E_{\nu,\text{tot}}^{\text{ul (cutoff)}} = 6.6 \cdot 10^{51} 3.7 \cdot 10^{54} \text{ erg}$

Now: online follow-up

See Imre Bartos' talk

Multimessenger: GRBs

Track channel only

Eur.Phys.J. C77 (2017) no.1, 20

- 1488 Gamma Ray Bursts
- Many models predict time-shifted neutrino signals
 - → Search for **v** within **40** days of the Gamma Ray Bursts
- 6 years of ANTARES data and 1 year of IceCube
- No coincidence found, UL (sensitivity) = 1 detectable v / 100 GRBs

Selected GRBs

Recorded neutrino candidates from ANTARES

Dark Matter from the Sun

Physics Letters B 759 (2016) 69-74

Track channel only

- WIMP annihilations in the **Sun**
- WIMP + WIMP $\rightarrow bb, \tau^{+}\tau^{-}, W^{+}W^{-}$ $\rightarrow ... \rightarrow \mathbf{v}$
- 6 years of ANTARES data
- No significant excess found

Dark Matter from the Galactic Center

arXiv:1612.04595

Track channel only

- WIMP + WIMP \rightarrow bb, $\tau^+\tau^-$, W⁺W⁻, $\mu^+\mu^-$, $\nu \nu \rightarrow ... \rightarrow \nu$
- Search for an excess of v close to the Galactic Center
- 9 years of ANTARES data
- No significant excess found
- **Limit** on the thermally averaged **annihilation cross section** <σv>

Summary and perspectives

- **All flavor** sensitivity by including shower events
- Excellent angular resolution...
 - → ...even for the **showers**
- Best sensitivity on a large part of the Southern sky...
 - → ...especially for **E** < **100 TeV**
- Physics reach from cosmic sources to dark matter

Improvements to come:

- Include showers in all analyses which use only tracks
- Next generation neutrino telescope: KM3NeT
 - → Talk from **Paschal Coyle**

Thank you!

Backup slides

On-off Galactic Ridge study

PLB 760 (2016) 143

- Search region
 - → |l|<30°, |b|<4°
- Comparing galactic plane with equivalent background regions
- **No excess** in the HE neutrinos
- 90% CL upper limits: < 3 IceCube HESE events coming from this region for E_v<300 TeV

