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Goals:  — Demonstrate backgrounds low enough to justify building a tonne-scale experiment. 
  — Establish feasibility to construct & field modular arrays of Ge detectors. 
  — Search for additional physics beyond the standard model. 

• Located underground at 4850’ level of Sanford Underground Research Facility 

• Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV) : 
— 3 counts/ROI/t/y (after analysis cuts).  Assay UL currently ≤ 3.5 
— Scales to 1 count/ROI/t/y for a tonne-scale experiment 

• 44.1 kg of Ge detectors 
— 29.7 kg of 87% enriched 76Ge crystals 
— 14.4 kg of natGe 
— Detectors: P-type, point-contact (PPC) 

• 2 independent cryostats 
— Ultra-clean, electroformed Cu 
— 22 kg of detectors per cryostat 
— Naturally scalable 

• Compact Shield 
— Low-background passive Cu and Pb  
— Active muon veto

The MAJORANA DEMONSTRATOR
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Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics  
with additional contributions from international collaborators.
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Module Implementation
Module 1:  16.9 kg (20) enrGe 

                      5.6 kg (9) natGe 

Module 2: 12.9 kg (14) enrGe 

                      8.8 kg (15) natGe
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9/2014 : Module commissioning 

5/2015 - 10/2015 : In-shield running 

10/2015 - 1/2016 : Offline, upgrades 

1/2016 - Present : In-shield running 

4/2016 : Module commissioning 

7/2016 - Present: In-shield running  
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DS-0 
Module 1 
June 26 –  

Oct. 7, 2015

DS-1 
Module 1 

Dec. 31, 2015 –  
May 24, 2016

DS-2 
Module 1 
May 24 –  

July 14, 2016

DS-3 
Module 1 
Aug. 25 –  

Sep. 27, 2016

DS-4 
Module 2 
Aug. 25 –  

Sep. 27, 2016

DS-5 
Module 1 & 2 
Oct. 13, 2016 – 

ongoing

Total (days) 103.15 144.50 50.97 32.37 32.36 97.7
Total acquired 87.93 136.98 50.47 31.73 25.80 90.41
Physics 47.70 61.34 + 20.41* 9.82 + 30.56* 29.97 23.84 82.52

High radon 11.76 7.32 - - - -
Calibration 15.44 7.32 0.65 1.18 1.17 1.39
Down time 15.21 7.51 0.50 0.64 6.56 7.29
Disruptive/ 
Commissioning 

13.10 34.43+ 5.92* 2.41 + 7.03* 0.57 0.78 6.51

Duty Cycles & Data Sets
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Commissioning, 
No inner shield

Inner EFCu  
shield installed

Inner shield &  
multi-sampling

No multi- 
sampling

First Module 2  
data

First combined  
M1+M2 dataset 

*

*

*Blind data Values up to Jan. 19, 2017*

*
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Background Model and Assay
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Results from radioassay paper: NIMA 828 (2016) 22  

[arXiv:1601.03779]

https://arxiv.org/abs/1601.03779
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Muon veto system has run continuously since 2014:   [arXiv:1602.07742] 
• First opportunity for vertical μ-flux measurement using completed Pb shield 
• Flux predicted for 4850 level (Hime & Mei, PRD 2006) 

• Our simulation (optimized for SURF):  

• Measured flux:

Muon Flux at the 4850
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Bottom Panels Inside Overfloor

Top Panels
� = (4.4± 0.1)⇥ 10�9 µ/s/cm2

� = (5.31± 0.17)⇥ 10�9 µ/s/cm2

� = (5.3± 0.4)⇥ 10�9 µ/s/cm2

https://arxiv.org/abs/1602.07742
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Calibrating the DEMONSTRATOR
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Using custom 228Th line sources and routine remote calibration: 
• Multi-peak fitter employed, online database stores results 
• New calibration paper: [arXiv:1702.02466]  trapENFCalHG
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https://arxiv.org/abs/1702.02466
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Ge Detector PSD Performance
PSD cuts are optimized to keep 90% single-site and < 10% multi-site events 

• 0νββ is a single site event 
• 208Tl 2614 keV γ can have pair production and emit 2γ 

• Both γ’s escape from detectors → double escape peak (DEP), single site  
• One γ escapes from detectors → Single escape peak (SEP), multi-site

9

γ 

γ 

Module 1 detectors
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Delayed-Charge Recovery Cut for α’s
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Alpha BG observed in DS-0 has been identifed and cut with high efficiency 
• Charge of these events drifts along the detector surface, not bulk 
• Distinctive waveform allows a high-efficiency (90%) cut for events < 2 MeV
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Background Spectrum in DS-1
Spectrum in the enriched detectors is dominated by 2νββ (good news!) 

• Module 1 data with all cuts applied: 606.0 kg-days exposure 
• Compare to simulated 2νββ spectrum with 
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Enriched Spectrum after cuts 

Simulated 2vββ (80% eff.) 
         GERDA Phase 1, 

Eur. Phys. J. C 75 (2015) 416

T 2⌫
1/2 = (1.926± 0.095)⇥ 1021 yr

[arXiv:1610.01210]

Neutrino 2016

https://arxiv.org/abs/1610.01210
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The 0vββ Region of Interest in DS-1
Enriched detectors in DS-1 are used to estimate the background: 

• 5 events left after analysis cuts* in a 400 keV window around ROI.   
• Background rate (3.1 keV ROI, 68%CL) : 
• Background index (400 keV window) :
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*All analysis cuts  
are still being  
optimized.

23+13
�10 cts/(ROI t y)

7.5+4.5
�3.4 ⇥ 10�3 cts/(keV kg y)

Neutrino 2016
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Low-Energy Spectrum in DS-0
Much lower background in enriched detectors, due to tight exposure control 

• Exposure, enriched: 478 ± 6 kg-days, natural: ~195 kg-days 
• From 20-40 keV: ~0.04 cts/kg-d-keV
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[arXiv:1612.00886]

https://arxiv.org/abs/1612.00886
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Low detector thresholds allow us to perform several low-energy searches: 
Search: 
•Light (<10 GeV/c2) WIMP searches  
•Bosonic Superweak Dark Matter 
•Pauli-Exclusion Principle Violation 
•Electron decay: 
• Solar Axions

The MAJORANA Low-Energy Program
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e- e-

e-

nucleus

γ

A,V

Simulated DM Signal

e� ! ⌫e⌫̄e⌫e

Solar Axion Spectrum
J. Redondo, arXiv:1310.0823 

Expected Signal: 
Excess < 2-2.5 keV from nuclear recoils 
Anomalous peak < 100 keV 
Ge x-ray peak at 10.6 keV 
Ge x-ray peak at, 11.1 keV 
Excess in continuum or peaks < 15 keV 
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For DS-0, 13 enriched detectors and a 478 kg-day exposure: 
• Most stringent limit is for pseudoscalar axion-like particles (mass 11.8 keV)  
• 90% upper limit for the coupling constants based on the expected event rate

Dark Matter Coupling Results
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gAe < 4.5⇥ 10�13

�DM(mV )�V e(mV ) =
4⇥ 1023

mV

✓
↵0

↵

◆
�pemV

A
kg�1 d�1

Pseudoscalar ALP-like DM
✓
↵0

↵

◆
< 9.7⇥ 10�28

Vector DM electron coupling ↵0

[arXiv:1612.00886]

https://arxiv.org/abs/1612.00886
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Three additional limits obtained from DS-0:  [arXiv:1612.00886] 
• Solar axion coupling (14.4 keV 57Fe M1) 
      Low-mass limit.  90% UL. 

• Non-Paulian transition in Ge:  

Binned likelihood study for peak at 10.6 keV 

• Electron decay 

Binned likelihood for peak at 11.1 keV 

Additional Low-Energy Results
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Ref. MALBEK, arxiv:1610.06141

(90% CL UL)

(90% CL UL)

ge↵AN ⇥ gAe < 3.8⇥ 10�17

aia
†
j � q a†jai = �ij

q = �1 + �2

1/2 �2 < 8.5⇥ 10�48

e� ! ⌫ ⌫̄ ⌫

⌧e > 1.2⇥ 1024 yr

MALBEK Data

https://arxiv.org/abs/1612.00886
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Summary and Outlook
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A few recent MAJORANA papers: 
• Low-energy DS-0 Results: 

• Muon Flux at SURF: 

• Calibration System: 

• Delayed Charge Recovery: 

• Initial 0vββ Results: 

• Background Model: 

Final shield construction is nearly complete, with 

both modules online and taking data!  

[arXiv:1612.00886] 

[arXiv:1602.07742] 

[arXiv:1702.02466] 

[arXiv:1610.03054] 

[arXiv:1610.01210] 

[arXiv:1610.01146]

https://arxiv.org/abs/1612.00886
https://arxiv.org/abs/1602.07742
https://arxiv.org/abs/1702.02466
https://arxiv.org/abs/1610.03054
https://arxiv.org/abs/1610.01210
https://arxiv.org/abs/1610.01146
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The MAJORANA Collaboration
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Backup Slides
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LEGEND
Large Enriched Germanium Experiment for Neutrinoless Decay 

Working cooperatively with GERDA and other interested groups toward the 

establishment of a next-generation 76Ge 0vBB decay experimental 

collaboration, to build an experiment to explore the inverted ordering region 
of the effective mass.
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37 institutions in 14 countries: North America, Europe, and Asia
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DS-1 DCR Cut and Bulk-Event Response
Removes most events above 2 MeV in the 
background spectrum, which are α candidates.   

Cut is 90% efficient for retaining events within 
detector bulk.  Only ~5% of α’s survive cut.
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Th Calibration 
2 - 3 MeV

Background Runs, 
1 – 2 MeV

Background Runs, 
2 – 3 MeV

C
ou

nt
s

Corrected DCR (ADC/ns)

DS1, Enriched Detectors

During calibration runs 
γ events survive cut. 

During background runs 
ββ(2ν) events survive cut. 

Candidate α events from 
background runs are removed.
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Enriched Spectra in DS-0 vs. DS-1
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Low-energy backgrounds in DS-1 are reduced by a factor of ~ 4 ! 
• From 20-40 keV:  DS-0 ~0.04 cts/kg-d-keV,  DS-1 ~0.01 cts/kg-d-keV 
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The MJD Shield
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0νββ: Half-Life and Neutrino Mass
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Effective Majorana mass of electron neutrino 
Contributions from electron terms in mixing matrix  
Measurements constrain the minimum mass eigenstate

U

Inverted HierarchyNormal Hierarchy

T 0⌫
1/2

M0⌫

G0⌫(Q�� , Z)

0νββ half-life.  Best current result: > 3.0 x 1025 years [5] 
phase space factor: kinematics of emission of two electrons 
nuclear matrix elements: govern transition probabilities

C. Wiseman, USC Thesis Proposal, 19 April 2016.

ββ Sensitivity (mixing parameters from arXiv:1106.6028)

A mββ limit of ~15 meV would disfavor Majorana neutrinos in an inverted hierarchy.
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Sensitivity vs. Exposure
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DS-1 Hardware & Analysis Upgrades
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Prior to DS-1 (Dec. 31, 2015 - May 24, 2016) 
• Installed electroformed inner Cu shield 
• Added shielding in cryostat cross arm 
• Replaced cryostat seal with PTFE gasket 
• Implemented delayed-charge recovery (DCR) α cut 

• Implemented muon veto and microphonics cuts
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Radiopure Components
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C. Wiseman, USC Thesis Proposal, 19 April 2016.

Solar Axions: A Brief Overview
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10�18e · cm < 2.9⇥ 10�26e · cm

Ref: J. Redondo, [16]

The “strong-CP” problem: The neutron electric dipole moment is too small! 
• Value predicted by QCD:                             Best experimental bound:  
• Peccei and Quinn added a U(1) symmetry term to the Standard Model which is broken at 

high energy scales and results in CP violation at low energy scales 
• Creates a Goldstone boson: neutral, spin-zero pseudoscalar particle, dubbed “axion” 

“Solar Axions” would be produced in the sun in large quantities 
• The “ABC” reactions: Axion deexcitation & recombination, Bremmstrahlung, Compton 

drive production for non-hadronic (tree-level) theories

*CP-symmetry: We observe the same physics when we replace a particle with its antiparticle (C) and invert its spatial coordinates (P)



C. Wiseman, USC Thesis Proposal, 19 April 2016.

Observing Axions in HPGe Detectors
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gae

Preliminary MAJORANA low-energy spectrum 

• 68Ge signature
• 56,57,58Co signature 
• 3H continuum
• Here be axions …

The axio-electric effect:  
The axion “takes the place” of a photon and ionizes a germanium 
nucleus.  The released electron is given an energy (nearly) equal 
to the incident axion. 

HPGe detector advantages: 
• Sub-keV energy thresholds possible 
• Excellent energy resolution  
• Enriched detectors have reduced cosmogenic activation

�ae(Ea) = g2ae (2.088⇥ 10�5)E2
a �pe(E�)

Proposed research: 
• Search the low-energy region 

for the peaks predicted by 
Redondo. If no peaks are found, 
set a competitive upper limit on 
the coupling term 

• Contribute to the ongoing effort 
to characterize the low-energy 
region of the Ge detectors.
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Solar Axions from Nuclear Transitions

30

Cosmic Ray and Solar Axion Studies with the Majorana Demonstrator

muon track, and a direct measurement of the muon angular distribution at the Davis Campus.
An e↵ective hit pattern cut which positively identifies all incident muons can also be used to search for

a modulation in the muon rate at the 4850 level underground. The rate of cosmic ray muon production in
the atmosphere is dependent on several variables throughout the year, including temperature variations, and
can be correlated with satellite data [25]. The muon veto system has been in operation for nearly two years
at the time of this report, and has the potential to search for a (possibly annually) modulating signal may
provide useful information on the characteristics of muon events in underground laboratories.

4.3 Solar Axion Searches

The low-energy region of the Demonstrator data provides a new opportunity to search for solar axions. In
particular, the potential of finding or setting limits on the predicted low-energy axion peaks is made possible
by the low energy thresholds of the HPGe detectors and the axioelectric e↵ect (shown in Figure 19) which is
capable of ionizing a Ge nucleus in the same way an incoming photon does. Its cross section is proportional
to the photoelectric cross section and is given by:

�

ae

(E
a

) = g

2

ae

(2.088 ⇥ 10�5)E2

a

�

pe

(E
�

) (21)

Figure 19: From Ref.[18]: Illustration of the axioelectric e↵ect making it possible to see axion events in Ge
detectors.

Great care has been taken to ensure that the enriched detectors are particularly low in background,
possessing very little 68Ge (which shows up as a low-energy peak at 10 keV), or tritium (3H, which manifests
as a continuum) at low energy. Figure 20 illustrates the di↵erence in backgrounds between enriched and
natural detectors, which have a higher abundance of tritium and 68Ge.

Source Energy (keV) Predicted Flux
cts/(cm2 day)

Si(K
↵1,↵2

) 1.739 4.95 ⇥ 1038

Si(K
�1

) 1.836 4.06 ⇥ 1038

S(K
↵1,↵2

) 2.307 4.00 ⇥ 1038

S(K
�1

) 2.464 2.57 ⇥ 1038

Fe(K
↵1,↵2

) 6.4 4.06 ⇥ 1038

Table 3: From Ref. [22]. Source, energy, and expected flux of axions from monoenergetic axio-deexcitation
events in the sun.

Several backgrounds exist at low energy that must be quantified before a search for axion peaks can be
e↵ective. For example, Table 4 gives a list of the cosmogenic x-ray lines observed by the CoGeNT detector
[24]. Studies of the e�ciency and detector resolution as a function of energy will need to be performed as
well, to characterize the HPGe detectors in this region and ensure they are calibrated properly.

C.G. Wiseman 20

gae ga��

�a
Fe(6.4 keV) = g2ae (4.7⇥ 1033cm�2 s�1)

Monoenergetic transitions in the Sun: The axion can “take the place” of a photon by axio-
deexcitation and recombination, and be emitted with (nearly) the same energy 
Experiments can set bounds on axion coupling terms:  
                       Example:

J Redondo, private communication to F.T. Avignone


