

Status of SNO+

J. P. Yáñez for the **SNO+ Collaboration**Lake Louise Winter Institute 2017

Neutrinoless double beta decay

- The neutrino could be a Majorana fermion
 - Only possible for neutral particles
 - Be its own antiparticle
 - Possible to observe processes beyond the Standard Model
- Some isotopes undergo double beta decay
 - o If the neutrino is Majorana, the decay can produce zero neutrinos
- $2v2\beta$ is rare; $0v2\beta$ would be even rarer to detect it
 - Achieve (and understand) very low background
 - Accurately determine detector response
 - Consider scalability of the technique

Neutrinoless double beta decay

- The neutrino could be a Majorana fermion
 - Only possible for neutral particles
 - Be its own antiparticle
 - Possible to observe processes beyond the Standard Model
- Some isotopes undergo double beta decay
 - If the neutrino is Majorana, the decay can produce zero neutrinos
- $2v2\beta$ is rare; $0v2\beta$ would be even rarer to detect it
 - Achieve (and understand) very low background
 - Accurately determine detector response
 - Consider scalability of the technique

The SNO+ idea

• Refill the Sudbury Neutrino Observatory (SNO) with liquid scintillator (LAB) + a $\beta\beta$ isotope to search for neutrinoless double beta decay

The SNO+ idea

- Refill the Sudbury Neutrino Observatory (SNO) with liquid scintillator (LAB) + a $\beta\beta$ isotope to search for neutrinoless double beta decay
- About SNO+
 - Low background neutrino detector in SNOLAB, ON, Canada
 - \circ At a depth of 2km (rock, ~5900 mwe, ~63 cosmic muons/day)
 - Target volume: acrylic vessel, 6m in radius
 - Detection method: Cherenkov/scintillation light
 - ~9,300 PMTs mounted at ~8.9m radius (54% coverage)
 - Shielding & background suppression
 - Cavity filled with ultra pure water
 - Outward-looking PMTs
 - Isotope: ¹³⁰Te (Q-value 2.5 MeV)

The SNO+ idea

Refill the Sudbury Neutrino Observatory (SNO) with liquid scintillator (LAB) + a $\beta\beta$ isotope to search for neutrinoless double beta decay

About **SNO+**

- Low background neutrino detector in SNOLAB, ON, Canada
- At a depth of 2km (rock, ~5900 mwe, ~63 cosmic muons/day)
- Target volume: acrylic vessel, 6m in radius
- Detection method: Cherenkov/scintillation light
 - ~9,300 PMTs mounted at ~8.9m radius (54% coverage)
- Shielding & background suppression
 - - Outward-looking PMTs
 - Isotope: ¹³⁰Te (Q-value 2.5 MeV)

Cavity filled with ultra pure water +REPAIRED PMTS,

NEW DAQ AND

CALIBRATION SYSTEMS

SNO+ *ov2β* detection

- $0v2\beta$ signal = 2 electrons
 - o E total = Q value = 2527 keV
 - Uniform over volume
 - No directionality

Backgrounds in *2β0ν* phase

²³⁸U decay chain (relevant part)

²³²Th decay chain (relevant part)

- Products of ²³⁸U and ²³²Th decay chains
 - Naturally present in liquid scintillator
 - Events removed by coincidence tagging
- Cosmogenic induced backgrounds
 - Spallation reactions on tellurium while at the surface
 - Purification techniques in place, underground storage
- External backgrounds
 - Radioactive decays in ropes, PMT array, AV, water
 - Removed largely by fiducial volume cuts
- Solar neutrinos (⁸B)
 - Independent flux constraints
- $2v2\beta$ decay irreducible

Detector calibration

Multiple calibration systems in place

- Laserball light diffusing sphere
 - Collection efficiency, reflections, attenuation
- Deployed radioactive sources
 - (Mostly) tagged gamma rays of known energy/energies
 - Energy scale and resolution
- Optical fibers mounted in PMT structure
 - Using fast LEDs/lasers, timing and gain measurements
 - Monitor stability, optical properties
 - No source insertion

Detector calibration

- System of underwater cameras installed
 - Improve knowledge of calibration source location
 - Reduce uncertainties in analysis of calibration data

Taken Feb. 13, 2017

Liquid Scintillator + Tellurium

LAB-PPO scintillator

- Long time stability, acrylic compatible
- High purity levels from manufacturer
- High, linear light yield

Natural tellurium

- High natural abundance = scalability
- Large $Q_{\beta\beta}$ of 2526.97 ± 0.23 keV
- Stored, purified underground

Loading Te in LAB-PPO

- \circ Planned to 0.5% (~ 1330 kg of 130 Te)
- Loaded as Te acid + butanediol (TeBD)
- TeBD is very transparent, some quenching
- Backgrounds can be kept low

2βον signal in SNO+

SNO+ 2βον sensitivity

Expected background spectra for nucleon decay (eg. signals at KamLAND limits)

Expected fluxes for the 4 main solar neutrino signals and background (5.5m fiducial volume)

Other physics potential

- Nucleon decay and exotic physics
- Solar neutrinos: ⁸B, ⁷Be, pep & CNO cycle
- Reactor and geo-neutrinos
- Supernovae neutrinos

True, reconstructed and best-fit supernova neutrino spectrum

Scintillator purification plant underground

Detector status

- Scintillator plant installed, in commissioning
- Tellurium purification comes next
- Water filled to neck level
- Electronics tested with high voltage
- DAQ system in place
- Calibration sources being commissioned
- Detector running and commissioning past 2 months

First delivery of 20 tonnes of LAB, Nov. 8 2016

Detector status

- Scintillator plant installed, in commissioning
- Tellurium purification comes next
- Water filled to neck level
- Electronics tested with high voltage
- DAQ system in place
- Calibration sources being commissioned
- Detector running and commissioning past 2 months

Detector status

- Scintillator plant installed, in commissioning
- Tellurium purification comes next
- Water filled to neck level
- Electronics tested with high voltage
- DAQ system in place
- Calibration sources being commissioned
- Detector running and commissioning past 2 months

Taken Feb. 13, 2017

Muon candidate in SNO+

Down-going muon candidate

First neutrino candidate

Feb. 5th, 2017 - Appears to be going up, no outward looking PMTs triggered, spotted during monitoring

The SNO+ schedule

1. Ultra pure water phase - starting now

- Recording ~10 hits/MeV deposited energy (Cherenkov light)
- Invisible nucleon decay, exotic physics
- Calibration

2. Scintillator phase

- Estimated 500 hits/MeV deposited energy
- Understanding of backgrounds
- Solar neutrinos, geo+reactor neutrinos

3. Tellurium-loaded scintillator phase

- Close to 400 hits/MeV deposited energy (0.5% loading)
- Neutrinoless double beta decay

Summary & Outlook

- SNO+ will search for neutrinoless double beta decay
 - Down to $T_{1/2} \ge 1.96 \times 10^{26} \text{ yr, m}_{\beta\beta} \sim 36-90 \text{ meV } (90\% \text{ CL, 5 yr})$
- Detector is ready for taking physics data
 - Cavity is close to full, electronics & DAQ are in place
 - Muons and first neutrino candidate already observed
- Calibration systems being commissioned
 - Mounted systems ready
 - Deployed sources for water phase are ready to go
- Water phase physics running soon

Backup slides

Deployed calibration sources

Source	Tagged?	Information
Laserball	Yes	Optical (quasi uniform diffuser)
Supernova source	Yes	Optical (fast pulsed generator for laserball)
Cherenkov	Yes	Optical (⁸ Li betas on acrylic)
¹⁶ N	Yes	Gammas (6.1 MeV)
⁴⁶ Sc	Yes	Gamma (0.89, 1.12 MeV)
AmBe	Yes	Neutrons, gamma (2.2, 4.4 MeV)
⁵⁷ Co	No	Gamma (122 keV)
⁴⁸ Sc	No	Gamma (1.0, 1.1, 1.3 MeV)

¹³⁰Te (Q-value 2.5 MeV)

SNO+ detection principle

SNO+ detection principle

