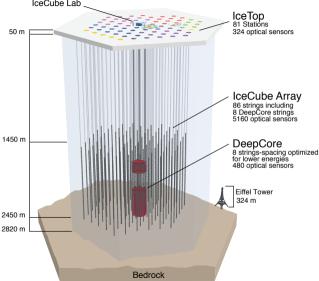


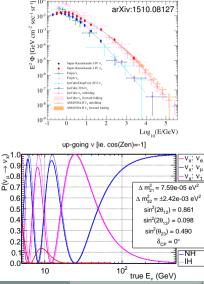
Measurement of Atmospheric ν_{μ} Disappearance with IceCube/DeepCore

João Pedro Athayde Marcondes de André Joshua Hignight for the IceCube Collaboration

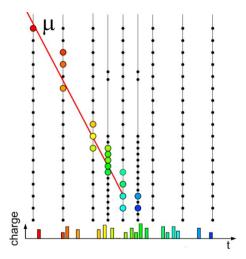

MICHIGAN STATE

MICHIGAN STATE

MICHIGAN STATI


- IceCube: 1 Gton water Cherenkov detector
 - Detector embedded in 3 km thick Antarctic ice sheet
 - Optimized for $E_{\nu} > 100 \text{ GeV } \nu$'s

• DeepCore:


- ~6 Mton more densely instrumented region in the center of IceCube
- Located in deepest, clearest ice
- \Rightarrow lower energy detection threshold (down to $E_{\nu} \sim 5 \text{ GeV}$)

Using atmospheric ν to study ν oscillation

- Large quantity of neutrinos from different baselines and energies
 - $ho~\sim 10^5$ /year u_μ trigger DC
 - ~ 10⁴/year of those used in oscillation analysis
- Neutrinos oscillating through the Earth's diameter have "first" maximum of ν_{μ} disappearance at \sim 25 GeV
 - signal accessible with DeepCore
- $\bullet\,$ Hierarchy dependent matter effects below ${\sim}12~GeV$
 - ► too low energy for DC ⇒ little/no impact on oscillation result

Measurement strategy

- Main background is atmospheric μ
 - Use IceCube as veto to reject atm μ events
- Reconstruct ν energy and direction
 - oscillation distance (L) given by zenith
- Measure oscillation by fitting $L \times E$ distribution

Comparison to last published results

IC2014 analysis

- Results in PRD 91, 072004 (2015)
- Focus on ν_{μ} CC "golden events"
 - Clear µ tracks
 - Several non-scattered photons
- Use only up-going events

Similarities in both analyses

- Atmospheric μ background shape estimated from data
- ν reconstruction resolution similar
- Both are 3 year data sets

This analysis

- Reconstruction fits full event topology with LLH-based method
 - Can fit events with scattered photons
 - Can reconstruct all v types
- Order of magnitude increase in statistics
- Full sky analysis
 - Better control of systematics
- PID variable separates sample in two:
 - Track: ν_{μ} CC enriched sample
 - Cascade: mix of all ν flavors
- Fitting includes term accounting for statistical uncertainty from prediction

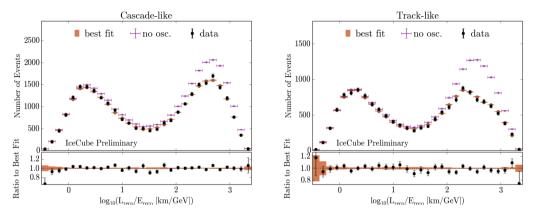
Fitting Function used in this analysis

- 30 years of MC for ν components and several systematic variants
- We use a sideband from data to measure the atmospheric μ background shape
 - Similar method used in PRD sample
- Need to account for uncertainty in prediction, especially for background muons
- Our solution is to fit a χ^2 function instead of a $\mathcal L$ function.

$$\chi^2 = \sum_{i \in \{\text{bins}\}} \frac{(n_i^{\text{pred}} - n_i^{\text{data}})^2}{(\sigma_i^{\text{pred}})^2 + (\sigma_i^{\text{data}})^2} + \sum_{j \in \{\text{syst}\}} \frac{(s_j - \hat{s}_j)^2}{\hat{\sigma}_{s_j}^2}$$

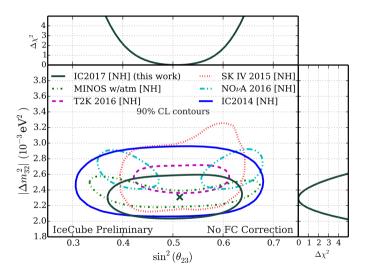
- n_i^{pred} , n_i^{data} : number of events in bin *i* for prediction (ν MC + μ sideband) and data
- σ^{data} : statistical uncertainty in the data for bin *i*

HIGAN STAT


- σ_i^{pred} : statistical uncertainty in prediction with additional shape uncertainty in μ sideband
- ► \hat{s}_j , $\hat{\sigma}_{s_j}$: central value and sigma of a Gaussian prior of systematic s_j
- All bins have large enough number of events a Gaussian distribution approximates well a Poisson distribution

Systematics used in analysis and best fit

Parameter	Priors	Best fit NH	Best fit IH
Standard neutrino mixing parameters			
$\Delta m^2_{32} [10^{-3} { m eV^2/c^4}]$	no prior	$2.31^{+0.12}_{-0.14}$	$-2.32^{+0.12}_{0.13}$
$\sin^2 \theta_{23}$	no prior	$0.51\substack{+0.08\\-0.08}$	$0.51\substack{+0.08\\-0.07}$
Atmospheric neutrino flux parameters			
$\Delta\gamma$ (spectral index)	$0.00{\pm}0.10$	-0.02	-0.02
ν_e normalization	$1.00{\pm}0.20$	1.24	1.24
u NC normalization	$1.00{\pm}0.20$	1.05	1.05
$\Delta(u/ar{ u})$, energy dependent	‡	-0.56 σ	-0.60 σ
$\Delta(u/ar{ u})$, zenith dependent	‡	-0.53 σ	-0.55 σ
Cross section parameters (from GENIE)			
M _A (resonance) [GeV]	$1.12{\pm}0.22$	0.91	0.92
Detector parameters			
DOM lateral sensitivity (hole ice)	$0.020{\pm}0.010$	0.022	0.022
DOM forward sensitivity (hole ice)	no prior	-0.76	-0.70
DOM efficiency [% of nominal]	100±10	103	103
Background			
Atm. μ contamination [%]	no prior	5.2	5.2
HIGAN STATE			

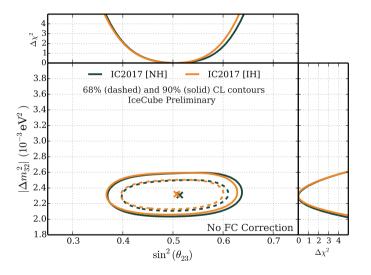

MICHIGAN STATE

ν_{μ} disappearance oscillation analysis

- Analysis done with events with *E_{reco}* ∈ [5.6, 56] GeV
- Fitting to data done in 3D space $(E, \cos \theta, PID) \rightarrow$ projected onto L/E for illustration
 - $\chi^2/ndf = 123.2/119$

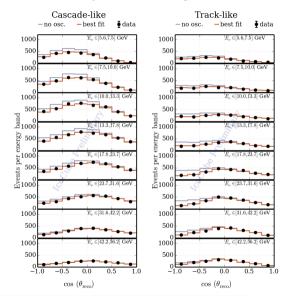
ν_{μ} disappearance oscillation analysis

- Preliminary contours using Wilks' threshold, Feldman-Cousins being calculated (contours expected to shrink with FC).
- Result consistent with other experiments.
- Using data from 3 years of detector operations.
- This measurement is still statistics limited!


Conclusion

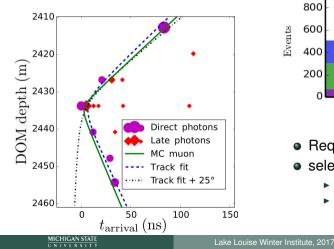
- Improvements in analysis techniques for IceCube-DeepCore
 - Full sky sample
 - More versatile reconstruction
- Updated measurement of u_{μ} disappearance made
 - Significant reduction in θ_{23} and Δm_{32}^2 ranges
 - Good data/MC agreement obtained
 - Result consistent with other experiments
 - * Preference for maximal mixing, same as T2K
 - Feldman Cousins contour being calculated, expected to shrink shown contour
- Other measurements with this new sample are under way!
- Stay tuned for more!

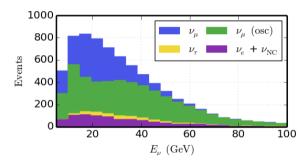
Backup


u_{μ} disappearance oscillation analysis – inverted hierarchy

 Preliminary contours using Wilks' threshold, Feldman-Cousins being calculated (expect contours to shrink with FC).

```
MICHIGAN STATE
```


Our data and best fit in analysis binning

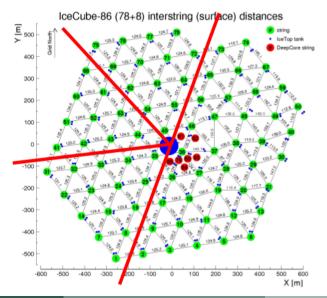


MICHIGAN STATE

"golden events"

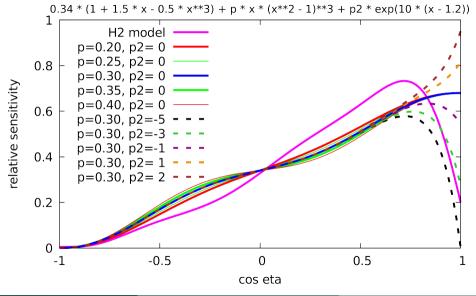
- $\bullet \ {\rm Clear} \ \mu \ {\rm tracks}$
 - Reduce contamination of cascades (primarily v NC and v_e CC)

- Require several non-scattered γ
- select events "easy" to reconstruct
 - 10° resolution in neutrino zenith
 - 25% resolution in neutrino energy


HybridReco/MultiNest

- MultiNest is an implementation of nested-sampling algorithm
 - alternative approach to Markov Chain MC
 - designed to work efficiently in multi-modal likelihood spaces
- We use it in place of a "minimizer"
 - Reconstruct 8 parameters describing low-energy ν_μ CC (HybridReco)
 - (x,y,z,t) + (zenith, azimuth) + (track length, cascade energy)
 - If used while fixing track length at 0 m ⇒"cascade fit"
 - Use the likelihood function defined in Millipede (Poisson)

MICHIGAN STATE



Inverted Corridor Cut

MICHIGAN STATE

DOM sensitivity

L4: straight cuts

- Noise triggers rejection:
 - RT Fiducial charge > 7 PE in [-250,+500] ns from trigger
 - $-(400m)^2 \le \Delta s^2 = (\Delta x)^2 (c\Delta t)^2 \le 0 m^2$
 - ► Number of DOMs in SRTTWOfflinePulsesDC ≥ 8
 - ▶ 7 m $\leq \sigma_{COGz} \leq$ 100 m
 - *σ*_{COGt} ≤ 1000 ns
- Atmospheric μ rejection:
 - DeepCore Classic veto charge < 5 PE</p>
 - Causal track veto: veto charge < 7 PE</p>
- Preliminary containment (Quality cut):

Z' and ρ' are centered at string 36 with Z at -350 m in IC coordinates, that is the "center" of DeepCore

▶ -125 m $\leq Z'_{1stHLC} \leq$ 150 m

•
$$\rho'_{1stHLC} \leq 150 \text{ m}$$

- $-125 \text{ m} \le Z'_{COGQ1} \le 200 \text{ m}$
- $\rho'_{COGQ1} \leq 150 \text{ m}$

L5: BDT cut

- BDT score ≥ 0.2
- 11 variables used in BDT:
 - NumHitDOMs
 - Total charge
 - ► σ_{COGz}
 - $COG_{Q1} \rho$ and $COG_{Q1} z$
 - Separation: spacial distance between COG_{Q1} and COG_{Q4}
 - QR3 and C2QR3
 - SPE11 zenith
 - Linefit zenith and speed

L6: final cuts

- Corridor Cut: maximum of 1 DOM hit
 - Inverted Corridor Cut: 2 or more DOM hits
- Containment on HybridReco/MultiNest fit:
 - ▶ -125 m \leq Z'_{start} and r'_{start} \leq 125 m if Z'_{start} \geq 0 m

 - -150 m $\leq Z'_{stop} \leq$ 150 m
 - $\rho'_{stop} \leq 150 \text{ m}$