24/02/17

To CCQE and Beyond

The latest cross-section results from T2K

Stephen Dolan For the T2K Collaboration

s.dolan@physics.ox.ac.uk

Stephen Dolan

Overview

• Neutrino interactions at T2K

- Previous T2K cross-section results
- Cross sections using proton information
 - CC0 π using proton kinematics
 - CC0 π using transverse kinematic imbalance
- Summary and future work

The T2K Experiment

v-Interactions and Osc. Analysis

Fractional error on the number of expected events at SK with and without ND280

	$ u_{\mu} \text{ sample}$ 1R $_{\mu}$ FHC	$ u_{e}$ sample 1R _e FHC	$ar{ u}_{\mu}$ sample 1R _µ RHC	$ar{ u}_{ extsf{e}}$ sample 1R _e RHC
ν flux w/o ND280	7,6%	8,9%	7,1%	8,0%
ν flux with ND280	3,6%	3,6%	3,8%	3,8%
ν cross section w/o ND280	7,7%	7,2%	9,3%	10,1%
u cross section with ND280	4,1%	5,1%	4,2%	5,5%
ν flux+cross section	2,9%	4,2%	3,4%	4,6%
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%
Super-K detector	3,9%	2,4%	3,3%	3,1%
Total w/o ND280	12,0%	11,9%	12,5%	13,7%
Total with ND280	5,0%	5,4%	5,2%	6,2%

• Largest systematic uncertainty comes from neutrino interaction uncertainties

Neutrino Interactions at T2K

What can we measure

LLWI 2017, Lake Louise, Canada

ND280 (off axis near detector)

Stephen Dolan

ND280 (off axis near detector)

Stephen Dolan

ND280 (off axis near detector)

Stephen Dolan

LLWI 2017, Lake Louise, Canada

Previously on T2K ...

- Neutrino interactions at T2K
- Previous T2K cross-section results
- Cross sections using proton information
 - CC0 π using proton kinematics
 - CC0 π using transverse kinematic imbalance
- Summary and future work

ND280 Off-Axis CC0 π Result

- Uses FGD1 as a CH target alongside TPC for tracking
- Flux integrated doubledifferential $CC0\pi$ cross section in final state muon kinematic variables $(p_{\mu}, \cos(\theta_{\mu}))$
- Split into two analyses with different selection and crosssection extraction strategies - Good agreement
- Results compared to Martini et al. model with/without 2p2h
 - Full results in the backups

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009) M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 81, 045502 (2010)

Detector: ND280 – FGD1 **Target:** Carbon **Signal:** $CC0\pi$ **Variables:** μ -kinematics **Status:** Phys. Re

11

What next?

- Would like to disentangle the role of separate nuclear effects and the free nucleon cross-section.
- Current results provide an important piece of the puzzle but further complementary measurements are needed...

Measuring proton kinematics

- Allows new handle on nuclear effects
- Results will be compared to NEUT and GENIE neutrino interaction simulations
 - Both plausible widely used models
 - NEUT has a 2p2h contribution, GENIE does not (in versions used here)
- Simulations have weak predictive power to describe proton kinematics
 - Nuclear effects are very difficult to model
 - First time looking at proton predictions
 - Need to ensure minimal dependence on simulation

- Measure fiducial cross section
- Minimise role of MC in unfolding (minimal regularisation)

$CC0\pi$ using $\mu + p$ kinematics

- Uses FGD1 as a CH target alongside TPC for tracking
- Measure fiducial fluxintegrated $CC0\pi + Np$ cross section in bins of $\cos(\theta_{\mu}), \cos(\theta_{p}), p_{p}$
- Restrict phase space $(p_p > 500 \text{MeV/c})$
- Can also measure proton multiplicity
- Fake data study (blind) real results coming soon

14

Detector: ND280 - FGD1

Single Transverse Variables

$CC0\pi + Np \text{ in } STV$

- Measure fiducial flux-integrated $CC0\pi + Np$ cross section **in bins of STV**
- Restrict cross section to ND280 acceptance —

 $\begin{cases} p_{\mu} > 250 \ MeV/c \\ \cos(\theta_{\mu}) > -0.6 \\ 450 \ MeV/c < p_{\mu} < 1 \ GeV/c \\ \cos(\theta_{p}) > 0.4 \end{cases}$

 $CC0\pi + Np$ in STV

The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.

 $CC0\pi + Np \text{ in STV}$

The peak position and early bins in δp_T and $\delta \phi_T$ tell us about Fermi Motion.

- The tails in δp_T and $\delta \phi_T$ and the extent of the rise at large $\delta \alpha_T$ indicate the energy transfer through **FSI** processes.
 - Also sensitive to 2p2h

 $CC0\pi + Np \text{ in STV}$

The peak position and early bins in δp_T and $\delta \phi_T$ tell us about Fermi Motion.

The tails in δp_T and $\delta \phi_T$ and the extent of the rise at large $\delta \alpha_T$ indicate the energy transfer through FSI processes.

- Also sensitive to 2p2h
- These differences between NEUT and GENIE are correlated.
 - From nucleon FSI model differences

Other new results

- Use PØD to measure $CC0\pi$ cross section on water
- Compare to T2K result on Carbon \rightarrow Probe of A-scaling

See proceedings from NuFact and ICHEP 2016

• Use FGD2 to measure $CC1\pi$ cross section on water

cm²/GeV/neutron)

0.9

0.8

0.7

0.6 0.5 (10⁻³⁸ 0.4

0.3

 $+CC0\pi$ on water 0.975 $< \cos(\theta_{\mu}) < 1$

NEW

Preliminarv

 $CC0\pi$ on carbon 0.980 < $\cos(\theta_{\mu})$ < 1

Excl. flux error

True-µ p

Results differential in muon and pion kinematics (separately)

- Anti-neutrino CC-Inclusive crosssection on carbon using FGD1
- Results differential in muon momentum and angle (separately)

 $0.600 \leq True - \mu \cos\theta < 0.700$

T2K Preliminary

NEUT (tuned)

GENIE

data (unfolded)

d⁷o (10⁻³⁸ cm²/GeV/neutron) دمعقطه (10⁻³⁸ cm²/GeV/neutron)

Summary

- T2K is measuring cross-sections of exclusive final-state topologies
- New techniques in use to complement each other and existing results
 Analyses specifically engineered to probe nuclear effects
- T2K's first measurement using proton kinematics
- First measurement of neutrino cross sections in single transverse variables
- First ever measurement of $\delta \alpha_T$
- Many more results coming soon!

The Future

Stephen Dolan

LLWI 2017, Lake Louise, Canada

Thank you for listening

Stephen Dolan

BACKUPS

Stephen Dolan

LLWI 2017, Lake Louise, Canada

T2K

Data Collection

(POT = Protons On Target)

- Continuous rise in beam power from ~225 kW (2014) to ~450 kW (2017)
- Using this to make world leading measurements of oscillation parameters (see talk by Raj Shah)

Neutrino Interactions and OA

• Oscillation analysis (OA) requires E_{ν} spectrum (or similar)

$$N_{\textit{pred}}(E_{\nu}^{\textit{reco}}) = \Phi(E_{\nu}^{\textit{true}}) \sigma(E_{\nu}^{\textit{true}}) P(\alpha \rightarrow \beta, E_{\nu}^{\textit{true}}) \epsilon(E_{\nu}^{\textit{true}}) S(E_{\nu}^{\textit{true}}, E_{\nu}^{\textit{reco}})$$

 Our largest OA systematic comes from neutrino interaction uncertainties (4%-6% out of 5%-7%)

Neutrino Interactions and OA

• Find E_{ν}^{reco} using observed μ at SK assuming stationary target and elastic scattering

$$E_{\nu}^{reco} = \frac{m_p^2 - m_n^2 - m_{\mu}^2 + 2m_n E_{\mu}}{2(m_n - E_{\mu} + p_{\mu} \cos(\theta_{\mu}))}$$

Bias due to:

- Fermi motion in the initial nuclear state
- Nucleon-nucleon correlations
- CCnonQE contamination in the selection.

Interaction Modes in all $CC0\pi$ events at ND280 (NEUT):

Interaction Modes in selected 1 ring μ -like events at SuperK(NEUT):

- Off-axis v_{μ} beam
 - Tightly-peaked at 600 MeV 2.5° off-axis towards SK
 - Low contamination from non- ν_{μ} components
 - Flux estimation aided by hadron production measurements from NA61/SHINE at CERN

Phys. Rev. D 87, 012001

LLWI 2017, Lake Louise, Canada

ND280 Off-Axis CC0 π Result

ND280 Off-Axis CC0 π Result

- Results compared to Martini et al. model with(red)/without(black) 2p2h
- Data prefer a 2p2h contribution

LLWI 2017, Lake Louise, Canada

$CC0\pi$ in STV - Fermi Motion and FSI

Moving from CCQE→CC0Pi+Np, STV still a probe of nuclear effects

Detector : ND280 – FGD1	Target: Carbon	Signal: CC0π+Np	Unfolding: Fit	Status: Blind
Stephen Dolan	LLWI 2017, La	ke Louise, Canada	36	TZK

$CC0\pi$ in STV - 2p2h and M_A

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009)

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

Detector : ND280 – FGD1	Target: Carbon	Signal: CC0π+Np	Unfolding: Fit	Status: Blind
Stephen Dolan	LLWI 2017, La	ke Louise, Canada	37	TZK

Reconstructing the Neutrino Direction

Stephen Dolan

$CC0\pi$ water cross section

- Isolate CC0 π events starting in the PØD, but use TPC for tracking
- Separate data taking periods into when PØD water target is full/empty
 - Subtract to get water cross section

Contact:

Tianlu Yuan

- Construct **CC0** π flux integrated double-differential cross section in p_{μ} , cos(θ_{μ})
 - Compare MC predictions
- Compare to FGD1 CC0π on Carbon result
- Similar studies underway using FGD2 water layers to extract Oxygen:Carbon cross section ratio

Stephen Dolan

LLWI 2017, Lake Louise, Canada

39

Status: New

