Gravitational wave observations of compact binary coalescences

Katerina Chatziioannou Canadian Institute for Theoretical Astrophysics

For the LIGO Scientific and VIRGO Collaborations

Lake Louise Winter Institute 2018

LIGO-Virgo | Frank Elavsky | Northwestern

Gravitational waves

Amplitude: Small

$$h \sim \frac{G}{c^4} \frac{mu^2}{R} \sim 10^{-22}$$

Propagation: Light speed, weakly interacting

Spectrum: Kepler 3rd Law:
$$f \sim \sqrt{\frac{m}{r_{12}^3}} \sim \frac{1}{m}$$
, $E_{rad} \sim \% m$

Example: for GW150914, $E_{\rm GW} \sim 3 M_{\odot}$

More luminous than the entire EM universe

The Gravitational Wave Spectrum

LIGO Scientific Collaboration

ZLIGO

Three detectors (for now)

LIGO Hanford

Virgo

LIGO Livingston

Observing schedule

LVC LRR 19 (2016) 1

LIGO Open Science Center

LIGO is operated by California Institute of Technology and Massachusetts Institute of Technology and supported by the U.S. National Science Foundation.

Getting Started

LIGO

Data

Events

Bulk Data

Tutorials

Software

Detector Status

Timelines

My Sources

GPS ↔ UTC

About the detectors

Projects

Acknowledge LOSC

Audio files

Listen to audio files from LIGO detections.

Rapid Triggers from LIGO Data

During O1 and O2, information about detected transients was shared as it became available with a set of interested astronomers as GCN notices. This exchange is archived:

- GW150914
- LVT151012
- GW151226
- GW170104
- GW170608
- GW170814
- GW170817

Data Releases: Compact Object Mergers

Click icons below for data and documentation:

https://losc.ligo.org/events/

Data Releases for Observed Transients

LVC PRL 116, 061102 (2016)

GW150914

LVC PRL 116, 241102 (2016)

And before you know it...

Spinning black holes

LVC PRL 118, 221101 (2017)

August 14, 2017

LVC PRL 119, 141101 (2017)

An order of magnitude improvement in sky localization $1160 \text{deg}^2 \rightarrow 60 \text{deg}^2$

First event seen by 3 detectors

Do the signals agree with General Relativity?

Yes, as far as we can tell

LVC PRL 116, 221101 (2016)

Parametric deviations

 $\tilde{h} \sim \tilde{A}(f; \vec{\theta}_{GR}) e^{i \sum_{i} p_i(\vec{\theta}_{GR}) f^i}$

 $p_i \to p_i (1 + \delta p_i)$

Yunes and Pretorius PRD 80, 122003 (2009)

Theory	a	α	b	β
Brans-Dicke	-	0	-7/3	β
Parity-Violation	1	α	Ó	_
Variable $G(t)$	-8/3	α	-13/3	β
Massive Graviton	_	0	-1	β
Quadratic Curvature	-	0	-1/3	β
Extra Dimensions	-	0	-13/3	β
Dynamical Chern-Simons	+3	α	+4/3	β

Cornish+ PRD 84, 062003 (2010)

LVC PRL 118, 221101 (2017)

Final object consistency

LVC PRL 118, 221101 (2017)

Modified dispersion arises when Lorentz invariance is violated

$$E^2 = p^2 c^2 + A p^\alpha c^\alpha$$

$$\delta v_g \sim \frac{{\rm GW \ period}}{{\rm travel \ time}} \sim \frac{{\rm GW \ wavelength}}{{\rm distance}}$$

For 800Mpc and 250Hz, $\delta v_g \sim 5 \times 10^{-20}$

 $\delta v_g \sim A E^{\alpha - 2} \Rightarrow A \sim \delta v_g E^{2 - \alpha} \sim \delta v_g (h_{\rm Pl} f)^{2 - \alpha} \sim 10^{-20} {\rm peV}^{2 - \alpha}$

LVC PRL 118, 221101 (2017)

Gravitational wave polarization

Will LRR 17 (2014), 4

Detector response

Affects the inferred sky location

Inconclusive when we only have 2 detectors

Isi+ PRD 96, 042001 (2017)

Three detectors: GW170814

Tensor modes preferred by more than 1000:1 (scalar) and 200:1 (tensor)

LVC PRL 119, 141101 (2017) Isi and Weistein (arxiv:1710.03794)

LIGO/University of Oregon/Ben Farr

Credit: LIGO/Virgo/Lovelace, Brown, Macleod, McIver, Nitz

GW170817

First detection of a binary neutron star coalescence

✓Gravitational wave
✓Short gamma ray burst
✓Optical/UV emission
✓X-ray (ongoing)
✓Radio (ongoing)

- Properties of supranuclear matter
- Astrophysical origin on sGRBs
- Origin of heavy elements
- Measurement of the Hubble constant
- Constraints on the speed of gravity

Binary neutron star

LVC PRL 119, 161101 (2017)

Extreme matter

Neutron stars are extended bodies with structure

Ozel, Freire (AnnuRev. of Astronomy and Astrophysics 54,401-440)

$$Q_{ij} = -\Lambda \mathcal{E}_{ij}$$

Credit: Aaron Zimmerman

Deformability

The tidal deformation accelerates the inspiral (additional energy sinks)

> Radius upper limit R<14km

LVC PRL 119, 161101 (2017)

Extensive followup

GW localization enabled EM followup

Short gamma ray burst

LVC & Fermi GBM & INTEGRAL, ApJL 848, 13 (2017)

Optical emission

kilonova: radioactive decay of r-process elements

BNS coalescences are a heavy-element production site

Combining information from GW and EM

Consistent with existing measurements

LVC & EM partners, Nature (2017)

Looking ahead

At design sensitivity

BNS: 0.4-400/year NSBH: 0.2-300/year BBH: 0.4-1000/year

LVC ApJL 832, 2 (2016) LVC CQG 27, 173001 (2010)

Epoch		2015-2016	2016-2017	2018-2019	2020+	2024+		
Planned run duration		4 months	9 months	12 months	(per year)	(per year)		
	LIGO	60-80	60-100	—	—	—		
Achieved BNS range/Mpc	Virgo	—	25 - 30	<u> </u>	—			
	KAGRA	—	—	—	—			
Estimated BNS detections		0.05 - 1	0.2-4.5	1 - 50	4 - 80	11 - 180		
Actual BNS detections		0	1	—				

LIGO-Virgo | Frank Elavsky | Northwestern

