Higgs measurements in ATLAS

Carlo Pandini (CERN) on behalf of the ATLAS collaboration

LLWI2018 - 19/02/2016

Introduction and outline

From LHC Run-1 dataset: Higgs discovery and first property measurements

Higgs boson discovery in 2012 from vector bosons decay channels: $H\rightarrow \chi\chi$, $H\rightarrow ZZ$, $H\rightarrow WW$

Evidence of coupling to fermions: $H \rightarrow \tau \tau$ Run-1 measured properties SM-like $m_H = 125.09 \pm 0.24$ GeV, spin-0, CP-even

From LHC Run-2 dataset:

- establish discovery in remaining decay channels / production modes
- measurement of Higgs boson properties

Focus of this talk on ATLAS Higgs results with first 36fb⁻¹ of data collected at 13 TeV

H→γγ couplings

- clean experimental signature
- analysis event categorization targeting H production modes
- ► signal yield from simultaneous S+B fit of the m_{xx} distribution
 - background function limiting the potential bias on the fitted signal
 - signal function double-sided Crystal Ball

$$\mu_{Run-2} = 0.99^{+0.12}_{-0.12} (stat.)^{+0.6}_{-0.5} (syst.)^{+0.7}_{-0.5} (TH.)$$

Improvement of ~ factor x2 on all uncertainty components with respect to Run-1 results

H→γγ couplings

- clean experimental signature
- analysis event categorization targeting H production modes
- signal yield from simultaneous S+B fit of the m_{γγ} distribution
 - background function limiting the potential bias on the fitted signal
 - signal function double-sided Crystal Ball

Production mode cross-section x BR(H \rightarrow $\gamma\gamma$) (rapidity region |y_H|<2.5)

Simplified Template Cross-Sections (STXS)

Exclusive regions, reducing theory dependence while maximising experimental sensitivity:

ATLAS
$$\sqrt{s}=13 \text{ TeV}, 36.1 \text{ fb}^{-1}$$
 $H \to \gamma \gamma, m_{H}=125.09 \text{ GeV}$

H→γγ fiducial & differential measurements

 Differential cross-sections as function of Higgs and jet kinematic variables: pT(γγ), y(γγ), N(jets), ... arxiv 1802.04146 36.1fb-1 @ 13TeV

jet-inclusive

- Compared to several state-of-the-art gluon-fusion Higgs TH predictions
- Measurements in several fiducial regions, targeting H prod. mode, or sensitive to BSM effects

$XS(pp \rightarrow H \rightarrow \gamma \gamma)$

$$\sigma^{\text{meas}}_{\text{fid}}$$
 =55 ± 9(stat.) ± 4(exp.) ± 0.1(theo.)fb $\sigma^{\text{SM}}_{\text{fid}}$ =64 ± 2fb

$$\frac{\mathrm{d}\sigma_i}{\mathrm{d}x} = \frac{N_i^{\mathrm{sig}}}{c_i \,\Delta x_i \int L \,\mathrm{d}t},$$

jet-exclusive

H→xx fiducial & differential measurements

 Differential cross-sections as function of Higgs and jet kinematic variables: pT(γγ), y(γγ), N(jets), ...

arxiv 1802.04146 36.1fb⁻¹ @ 13TeV

3.5

- Compared to several state-of-the-art gluon-fusion Higgs TH predictions
- Measurements in several fiducial regions, targeting H prod. mode, or sensitive to BSM effects

H→ZZ* production mode cross-section

Iow branching fraction: BR(H→ZZ*)~2.6% further reduced by BR(Z→ee,μμ) arxiv 1712.02304 36.1fb-1 @ 13TeV

- main background: non-resonant ZZ* production (irreducible)
- ► reducible background (Z+jets, top) strongly suppressed by selection
- σ*BR(H→ZZ*) for different production modes from dedicated H→4I event categories

Production cross-section measured inclusively, and in exclusive STXS regions

$$\sigma_{\text{inclusive}}^* \text{BR}(H \to ZZ^*) = 1.73^{+0.24}_{-0.23} (\text{stat})^{+0.10}_{-0.08} (\text{sys}) \text{ pb}$$
 $\sigma^{\text{SM}}_{\text{inclusive}}^* \text{BR}(H \to ZZ^*) = 1.34 \text{ fb } \pm 0.09 \text{ pb}$

 $|y_H| < 2.5$

4 "stage-0" STXS bins

▶ 10 "stage-1" STXS bins

H→ZZ* fiducial & differential measurements

► fiducial cross-section measurement also in good agreement with SM

JHEP 10 (2017) 132 36.1fb-1 @ 13TeV

$$\sigma^{\text{meas}}_{\text{fid}} = 3.62 \pm 0.50 (\text{stat})^{+0.25}_{-0.20} (\text{sys}) \text{ fb}$$

$$\sigma^{\text{SM}}_{\text{fid}} = 2.91 \pm 0.13 \text{ fb}$$

single/double-differential cross-section measurements

SM ggH predictions normalized to total N3LO cross-section from LHCHXSWG

Di-photon and 4-leptons selections inherited from coupling/cross-section measurements

$$m^{ZZ*} = 124.88 \pm 0.37 \text{(stat)} \pm 0.05 \text{(syst)} \text{ GeV}$$

 $m^{YY} = 125.11 \pm 0.21 \text{(stat)} \pm 0.36 \text{(syst)} \text{ GeV}$

H(ZZ) statistics limited $H(\gamma\gamma)$ systematics limited

 $\Delta m_H = 0.23 \pm 0.42(stat) \pm 0.36(syst)$ GeV

 $m_H = 124.98 \pm 0.19(stat) \pm 0.21(syst) GeV$ = 124.98 ±0.28 GeV

(compared to the Run-1 ATLAS⊕CMS result of m_H = 125.09 ±0.21(stat) ±0.11(syst) GeV)

VH(H→bb)

3 main channels: V(→leptons: II, Iv, vv)+H(bb)

Standard selection cuts:

- 2 central jets (|η|<2.5) p_T > 20GeV reconstruct H(bb) candidate
- nJet ≤ 3 for Z(vv)H and W(lv)H channels
- ► $p_T^V > 150 \text{GeV}$ [+75-150 GeV for Z(II)H]
- multivariate approach BDT

Sensitive region relatively boosted: O(150-250)GeV

Systematic > Statistical

•						
Source of un	certainty	σ_{μ}				
Total		0.39				
Statistical		0.24				
Systematic		0.31				
Experimenta	l uncertainties					
Jets		0.03				
$E_{ m T}^{ m miss}$	0.03					
Leptons		0.01				
	b-jets	0.09				
b-tagging	c-jets	0.04				
	light jets	0.04				
	extrapolation	0.01				
Pile-up	I	0.01				
Luminosity		0.04				
Theoretical a	and modelling u	ncertainties				
Signal		0.17				
Floating nor	malisations	0.07				
$Z + \mathrm{jets}$		0.07				
$W + \mathrm{jets}$		0.07				
$t ar{t}$		0.07				
Single top qu	uark	0.08				
Diboson		0.02				
Multijet		0.02				
MC statistic	al	0.13				

VH(H→bb)

Analysis cross-check: measurement of **SM diboson semileptonic VZ(bb)**

VZ(bb) observed with at 5.8σ sensitivity

 $\mu_{VZ} = 1.11^{+0.12}_{-0.11} (stat.)^{+0.22}_{-0.19} (syst.)$

Combining 3 VH(bb) lepton-channels:

VH(bb) signal strength at 13TeV

 $\mu_{VH} = 1.20^{+0.24}_{-0.23} (stat.)^{+0.34}_{-0.28} (syst.)$

significance	13TeV	7+8+13TeV
expected	3.0	4.0
observed	3.5	3.6

Evidence of VH(bb) above 3σ sensitivity!

ttH(multilepton)

- Sensitive to direct coupling of H to top quarks, targeting H → WW, H → ττ, and H → ZZ by defining specific categories
- multivariate discriminant (MVA)
 in signal-enriched regions
- ▶ most sensitive regions: 3lepton, 2lepton-SS mainly populated by H → WW decays
- main systematic uncertainties from fake-lepton estimate, jet energy scale/resolution (and signal theory on μ_{ttH(ML)})

Best-fit $\mu_{t\bar{t}H}$ for m_H =125 GeV

Combination of 7 signal regions:

ttH(ML) evidence at 4.1σ observed (2.8 σ expected)

 $\mu_{\text{ttH(ML)}} = 1.6^{+0.3}_{-0.3} \text{(stat.)} + 0.4_{-0.3} \text{(syst.)}$

ttH(bb)

- Sensitive to direct coupling of H to top quarks, exploit the large BR(H→bb) in combination with semi- and di-leptonic ttbar channels
- events categorised in signal-enriched and depleted regions based on #jets and #b-tagged jets
- multivariate discriminant (MVA) in signal-enriched regions

ttH(bb) at 1.4 σ observed (1.6 σ expected) $\mu_{ttH(bb)} = 0.84^{+0.29}_{-0.29}(stat.)^{+0.57}_{-0.54}(syst.)$

Modeling of **tt+hf** background limiting factor

Uncertainty source	Δ	$\Delta \mu$		
$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46		
Background-model stat. unc.	+0.29	-0.31		
b-tagging efficiency and mis-tag rates	+0.16	-0.16		
Jet energy scale and resolution	+0.14	-0.14		
$t\bar{t}H$ modeling	+0.22	-0.05		
Total statistical uncertainty	+0.29	-0.29		
Total uncertainty	+0.64	-0.61		

ttH(ATLAS combination)

While ttH(ML) and ttH(bb) have dedicated analyses, the remaining channels come from sub-categories of the main H→γγ and H→ZZ analyses

Evidence of ttH production at 4.2σ observed sensitivity!

Channel	Best	-fit μ	Significance		
	Observed	Expected	Observed	Expected	
Multilepton	$1.6^{+0.5}_{-0.4}$	$1.0^{+0.4}_{-0.4}$	4.1σ	2.8σ	
$H o b ar{b}$	$0.8^{+0.6}_{-0.6}$	$1.0^{+0.6}_{-0.6}$	1.4σ	1.6σ	
$H o \gamma \gamma$	$0.6^{+0.7}_{-0.6}$	$1.0^{+0.8}_{-0.6}$	0.9σ	1.7σ	
$H \rightarrow 4\ell$	< 1.9	$1.0^{+3.2}_{-1.0}$		0.6σ	
Combined	$1.2^{+0.3}_{-0.3}$	$1.0^{+0.3}_{-0.3}$	4.2σ	3.8σ	

Conclusions

Campaign of Higgs measurements ongoing in ATLAS with LHC Run-2 dataset: results with first 36.1fb⁻¹ presented today

- stat. limited measurements will continue to improve throughout Run-2, moving towards a systematics limited regime: understanding of uncertainty sources is critical
- full Run-2: possibility of precision measurements for fermionic channels: towards differential results!
- ▶ already recorded 44fb⁻¹ more at 13TeV looking forward to analyzing the new data!

Thanks for your attention!

BACK-UP

(All ATLAS Higgs results are available here)

The Large Hadron Collider (LHC)

Circolar 27 km proton-proton collider, located at **CERN**, on the Franco-Swiss border.

Designed to achieve high centre of mass energy and high luminosity:

design:

$$\sqrt{s_{pp}} = 14 \text{ TeV}$$

L = 1e34 cm⁻²s⁻¹ = 0.01 pb⁻¹s⁻¹

Compared to $\sigma(pp \to VH \to leptons, bb) = 0.25 \ pb \ (m_H = 125 \ GeV) - O(200) \ evts/day$

Run-1 (2011-2012) data-taking:

$$\sqrt{s_{pp}} = 7-8 \text{ TeV}$$
 $L_{peak} = 0.35-0.77e34 \text{ cm}^{-2}\text{s}^{-1}$

► Run-2 (2015-2016) data-taking: $\sqrt{s_{pp}} = 13 \text{ TeV}$ $L_{peak} = 1.37e34 \text{ cm}^{-2}\text{s}^{-1}$

Two main multi-purpose experiments (ATLAS, CMS) designed for precise tests of SM physics, and the search and study of the Higgs boson - along with five experiments targeting specific physics (LHCb, ALICE, LHCf, MoEDAL, TOTEM)

The ATLAS experiment

General-purpose, ~4π detector for multi-TeV pp collisions

ID: charged particle tracks, decay vertexes

- · |eta| < 2.5
- $\sigma_{p_T}/p_T \sim 0.05\% p_T \oplus 1\%$

ECAL: e/γ energy/direction, hadron rejection

- $|\eta| < 3.2$
- σ_E/E~0.05%√E⊕0.7%
 (barrel)

HCAL: hadron(jet) energy/direction

- $|\eta| < 4.9$
- σ_E/E~50%√E⊕3% (barrel)

MS: muon tracks

- $|\eta| < 2.7$
- $\sigma_p/p < 10\%$ up to 1 TeV

The SM scalar sector: Higgs boson

Brute-force mass terms for fermions and bosons in the SM Lagrangian:

- bosons: m²BµBµ
- fermions: $m(\overline{\Phi}_L \Phi_R + \overline{\Phi}_R \Phi_L)$

Gauge invariance of the theory is spoiled:

- → non-renormalizable theory
- → unitarity violation at high-energy scales

Mass-terms appear in a gauge-invariant way in the Lagrangian when introducing a scalar sector

$$\Phi = \left(egin{array}{c} \phi^+ \ \phi_1 + i\phi_2 \end{array}
ight) egin{array}{c} ext{Scalar-field potential} \ ext{complex doublet of scalar fields} \end{array}$$

$$V(\Phi)
ightarrow V(v) = \frac{1}{2}\mu^2|v|^2 + \frac{1}{4}\lambda v^4$$

Spontaneous Symmetry Breaking (SSB)

- $L_{\Phi} + L_{gauge} = \left(\begin{array}{c} rac{1}{2} (\partial_{\mu} \sigma) (\partial^{\mu} \sigma) + \mu^2 \sigma^2 \lambda v \sigma^3 rac{\lambda}{4} \sigma^4 + \end{array}
 ight.$ $+(rac{gv}{2})^2W_{\mu}^+W_-^{\mu}+rac{1}{2}(rac{g^2+g'^2}{4})v^2Z_{\mu}Z^{\mu}+$ $+rac{1}{2}g^{2}vW_{\mu}^{+}W_{-}^{\mu}\sigma+rac{g^{2}v}{2}rac{1}{2\cos(heta_{W})^{2}}+Z_{\mu}Z^{\mu}\sigma+$ $+ \frac{g^2}{4} W^+_{\mu} W^{\mu}_{-} \sigma^2 + \frac{g^2}{4} \frac{1}{2\cos(\theta_W)} Z_{\mu} Z^{\mu} \sigma^2 \Big)$
- $L_{Yukawa} = -Y_u(\bar{Q}_L\tilde{\Phi}u_R + \bar{u}_R\tilde{\Phi}^{\dagger}Q_L) Y_d(\bar{Q}_L\Phi d_R + \bar{d}_R\Phi^{\dagger}Q_L)$

- H coupling to gauge boson defined by SSB
- ► H Yukawa coupling to fermions free parameters

Higgs boson physics at the LHC

- Main production mechanism at the LHC through gluon-fusion (~via top-quark loop)
- ► VBF, WH, ZH, bbH and ttH are sub-dominant but can provide interesting experimental signatures

Cross-sections from 8TeV to 13TeV

Simplified Template XS measurements

STXS framework as natural evolution of signal strength measurements:

maximize experimental sensitivity while minimizing theory dependence folded into the measurement

theoretical uncertainties on SM prediction underlying theory model (SM or BSM)

- measure prod. mode cross-sections in exclusive regions (simplified templates),
 rather than signal strengths
- inclusive in H decay: possibility to combine channels
- allowing for advance analysis techniques (MVA, ...)
- complementary to full-fledged fiducial and differential measurements

$$y_j = \sum_i A_{ji} \cdot r_i \cdot (\sigma_i \cdot \mathbf{B}_{4\ell})_{SM} \cdot r_f \cdot \left(\frac{\mathbf{B}_f}{\mathbf{B}_{4\ell}}\right)_{SM} \cdot \mathcal{L},$$

- σ_i = SM template cross-section in the region-i, B = SM branching-ratio
- ► r_i = multiplicative 'signal-strength-like' factor for the region-i
- A_{ij} = detector acceptance and response matrix between analyses categories and STXS regions

Simplified Template XS measurements

- avoid extrapolation with nontrivial or sizeable theoretical uncertainties
- avoid large variations of exp. acceptance within one bin
- sensitivity to BSM effects (e.g. high-p_T)
- mutually exclusive, and in minimum number

Simplified Template XS measurements

Higgs total cross-section combination

► Cross-section measurements @ 13TeV combined to $\sigma(pp \rightarrow H+X) = 57^{+6.0}_{-5.9}(stat)^{+4.0}_{-3.3}(sys) pb$ $\sigma^{SM}(pp \rightarrow H+X) = 55.6^{+2.4}_{-3.4}(stat)$

from combination of the $(H \rightarrow \chi \chi, ZZ^*)$ production cross sections

- measurements @ 7,8TeV from inclusive signal strengths translated to total prod. XS
- direct combination of 13TeV Simplified Template Cross Section "stage-0" results

Higgs total cross-section combination

H→γγ production cross-section

Production mode cross-section in the rapidity region $|y_H| < 2.5$, multiplied by BR(H $\rightarrow \chi \chi$)

Impact of possible deviations in the BR($H\rightarrow \gamma\gamma$) removed by measuring ratios to ggH cross-section

Process	Result	Uncertainty				SM prediction
$(y_H <2.5)$		Total	Stat.	Exp.	Theo.	
$\sigma_{ m VBF}/\sigma_{ m ggH}$	0.20	+0.10 -0.07	(+0.09 -0.06	+0.04 -0.02	$^{+0.04}_{-0.02}$	$0.078^{+0.005}_{-0.006}$
$\sigma_{ m VH}/\sigma_{ m ggH}$	0.04	+0.06 -0.05	$\begin{pmatrix} +0.06 \\ -0.04 \end{pmatrix}$	+0.01 -0.01	$^{+0.01}_{-0.01}$	$0.045^{+0.004}_{-0.005}$
$\sigma_{ m top}/\sigma_{ m ggH}$	0.009	+0.010 -0.009	$\begin{pmatrix} +0.010 \\ -0.009 \end{pmatrix}$	+0.002 -0.001	$^{+0.002}_{-0.001}$	$0.012^{+0.001}_{-0.002}$

H→γγ uncertainties

- ► N3LO ggH
- 4 uncertainties for missing higher order correction: 2 yield unc.,
 2 jet-bin-migrations
- 3 uncertainties on pTH: 2 pTH migration effects, 1 top-mass
- 2 uncertainties for ggH acceptance in VBF categories, 2 yield in 2-jet and >2-jet bin, 1 on dPhi(jj,γγ)

		Systematic uncertainty source	N_{NP}	Constraint	Category	Fiducial
					Likelihood	Likelihood
		ggH QCD	9	$N_{\rm S}^{\rm ggH} F_{\rm LN}(\sigma_i, \theta_i)$	✓	-
	N	dissing higher orders (non-ggH)	6	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
ory		$B(H o\gamma\gamma)$	1	$N_{\rm S}^{\rm tot} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
Theory		PDF	30	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		$lpha_{ m S}$	1	$N_{\rm S}^{ m p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		UE/PS	5	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	✓	-
		Heavy flavor content	1	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	✓	-
		Luminosity	1	$N_{\rm S}^{\rm tot} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
	Yield	Trigger	1	$N_{\rm S}^{\rm tot} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		Photon identification	1	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
7		Photon isolation	2	$N_{\rm S}^{ m p} F_{\rm LN}(\sigma_i, heta_i)$	\checkmark	-
Experimental	Migration	Flavor tagging	14	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	✓	-
rim		Jet	20	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
xpe		Jet flavor composition	7	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
щ		Jet flavor response	7	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		Electron	3	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
	2	Muon	11	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		Missing transverse momentum	3	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		Pileup	1	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	\checkmark	-
		Photon energy scale	40	$N_{\rm S}^{\rm p} F_{\rm LN}(\sigma_i, \theta_i)$	✓	-
		ATLAS-CMS m_H	1	$\mu_{\mathrm{CB}} F_{\mathrm{G}}(\sigma_i, \theta_i)$	✓	✓
Mass		Photon energy scale	40	$\mu_{\mathrm{CB}} F_{\mathrm{G}}(\sigma_i, \theta_i)$	\checkmark	\checkmark
		Photon energy resolution	9	$\sigma_{\mathrm{CB}} F_{\mathrm{LN}}(\sigma_i, \theta_i)$	✓	✓
Background		Spurious signal	Varies	$N_{\mathrm{spur},c} \; \theta_{\mathrm{spur},c}$	✓	√

Uncertainty Group	$\sigma_{\mu}^{ m syst.}$
Theory (QCD)	0.041
Theory $(B(H \rightarrow \gamma \gamma))$	()) 0.028
Theory (PDF+ α_S)	0.021
Theory (UE/PS)	0.026
Luminosity	0.031
Experimental (yield	0.017
Experimental (migr	ations) 0.015
Mass resolution	0.029
Mass scale	0.006
Background shape	0.027

- photon energy scale shift in peak position by 0.21%-0.36% of nominal peak position
- photon energy resolution change signal width by 6%-13% of nominal width

H→γγ background functions

H→γγ categories

$\begin{array}{lll} \mbox{ti H lep 1fwd} & N_{lep} = 1, N_{jens}^{jens} \leq 4, N_{b-lag} \geq 1, N_{jens}^{fwd} \geq 1 Q_{jens}^{fwd} \geq 25 GeV \mbox$	Category	Selection
ttH lep $N_{\rm lep} \geq 1$, $N_{\rm pets}^{\rm cen} \geq 2$, $N_{b-{\rm tag}} \geq 1$, $Z_{\ell\ell}$ veto $(p_{\rm T}^{\rm jet} > 25{\rm GeV})$ ttH had BDT1 $N_{\rm lep} = 0$, $N_{\rm jets} \geq 3$, $N_{b-{\rm tag}} \geq 1$, BDT $_{\rm ttH} > 0.92$ ttH had BDT3 $N_{\rm lep} = 0$, $N_{\rm jets} \geq 3$, $N_{b-{\rm tag}} \geq 1$, $0.83{\rm 8DT}_{\rm ttH} < 0.92$ ttH had BDT3 $N_{\rm lep} = 0$, $N_{\rm jets} \geq 3$, $N_{b-{\rm tag}} \geq 1$, $0.79{\rm 8DT}_{\rm ttH} < 0.83$ ttH had BDT4 $N_{\rm lep} = 0$, $N_{\rm jets} \geq 3$, $N_{b-{\rm tag}} \geq 1$, $0.52{\rm 8DT}_{\rm ttH} < 0.79$ tH had 4j1b $N_{\rm lep} = 0$, $N_{\rm jets}^{\rm len} = 4$, $N_{b-{\rm tag}} = 1$ ($p_{\rm jet}^{\rm jet} > 25{\rm GeV}$) tH had 4j2b $N_{\rm lep} = 0$, $N_{\rm jets}^{\rm len} = 4$, $N_{b-{\rm tag}} = 2{\rm C}p_{\rm jet}^{\rm jet} > 25{\rm GeV}$ $N_{\rm lep}^{\rm jet} = 1$, $N_{\rm lep}^{\rm jet} = 10$, $N_{\rm lep}^{\rm jet} $	tH lep 0fwd	$N_{\text{lep}} = 1, N_{\text{jets}}^{\text{cen}} \le 3, N_{b-\text{tag}} \ge 1, N_{\text{jets}}^{\text{fwd}} = 0 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
ttH had BDT1 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $DDT_{ttH} > 0.92$ ttH had BDT2 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.83 < BDT_{ttH} < 0.92$ ttH had BDT3 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.79 < BDT_{ttH} < 0.83$ ttH had BDT4 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.52 < BDT_{ttH} < 0.79$ ttH had 4j1b $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 1$, $0.52 < BDT_{ttH} < 0.79$ ttH had 4j2b $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 1$ ($P_T^{jet} > 25$ GeV) $P_T^{jet} > 25$ GeV) Wh dilep $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 2$ ($P_T^{jet} > 25$ GeV) Wh lep High $N_{lep} = 1$, $ m_{ey} - 89$ GeV > 5 GeV, $p_T^{jet} > 150$ GeV p_T^{jet	tH lep 1fwd	$N_{\text{lep}} = 1, N_{\text{jets}}^{\text{cen}} \le 4, N_{b-\text{tag}} \ge 1, N_{\text{jets}}^{\text{fwd}} \ge 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
ttH had BDT1 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $DDT_{ttH} > 0.92$ ttH had BDT2 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.83 < BDT_{ttH} < 0.92$ ttH had BDT3 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.79 < BDT_{ttH} < 0.83$ ttH had BDT4 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.52 < BDT_{ttH} < 0.79$ ttH had 4j1b $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 1$, $0.52 < BDT_{ttH} < 0.79$ ttH had 4j2b $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 1$ ($P_T^{jet} > 25$ GeV) $P_T^{jet} > 25$ GeV) Wh dilep $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 2$ ($P_T^{jet} > 25$ GeV) Wh lep High $N_{lep} = 1$, $ m_{ey} - 89$ GeV > 5 GeV, $p_T^{jet} > 150$ GeV p_T^{jet	ttH lep	$N_{\text{lep}} \ge 1$, $N_{\text{iets}}^{\text{cen}} \ge 2$, $N_{b-\text{tag}} \ge 1$, $Z_{\ell\ell}$ veto $(p_{\text{T}}^{\text{jet}} > 25 \text{ GeV})$
ttH had BDT2 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.83 < BDT_{ttH} < 0.92$ ttH had BDT3 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.79 < BDT_{ttH} < 0.83$ ttH had BDT4 $N_{lep} = 0$, $N_{jets} \ge 3$, $N_{b-tag} \ge 1$, $0.79 < BDT_{ttH} < 0.79$ ttH had 4j1b $N_{lep} = 0$, $N_{jets} = 4$, $N_{b-tag} \ge 1$ ($p_T^{jet} > 25 \text{ GeV}$) ttH had 4j2b $N_{lep} = 0$, $N_{jets}^{cen} = 4$, $N_{b-tag} = 1$ ($p_T^{jet} > 25 \text{ GeV}$) VH dilep $N_{lep} = 0$, $N_{jets}^{cen} = 4$, $N_{b-tag} \ge 2$ ($p_T^{jet} > 25 \text{ GeV}$) VH dilep $N_{lep} = 1$, $ m_{ep} - 89 \text{ GeV} > 5 \text{ GeV}$, $p_T^{\ell+E_{miss}} > 150 \text{ GeV}$ VH lep High $N_{lep} = 1$, $ m_{ep} - 89 \text{ GeV} > 5 \text{ GeV}$, $p_T^{\ell+E_{miss}} > 150 \text{ GeV}$, $p_T^{miss} > 150 \text{ GeV}$, p_T	ttH had BDT1	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, \text{BDT}_{\text{ttH}} > 0.92$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ttH had BDT2	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ttH had BDT3	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, 0.79 < \text{BDT}_{\text{ttH}} < 0.83$
tH had 4j1b $N_{lep} = 0$, $N_{jets}^{cen} = 4$, $N_{b-tag} = 1$ ($p_T^{pt} > 25$ GeV) tH had 4j2b $N_{lep} = 0$, $N_{jets}^{cen} = 4$, $N_{b-tag} \ge 2$ ($p_T^{jet} > 25$ GeV) VH dilep $N_{lep} \ge 2$, 70 GeV $\le m_{\ell\ell} \le 110$ GeV VH lep High $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{\ell + E_T^{miss}} > 150$ GeV VH lep Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{\ell + E_T^{miss}} > 150$ GeV, E_T^{miss} significance > 1 VH MET High $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{\ell + E_T^{miss}} > 150$ GeV, E_T^{miss} significance > 9 or $E_T^{miss} > 250$ GeV VH MET Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{\ell + E_T^{miss}} > 150$ GeV, $p_T^{miss} > 250$ GeV VH MET Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{miss} > 150$ GeV, $p_T^{miss} > 250$ GeV VH Met Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{miss} > 150$ GeV, $p_T^{miss} > 250$ GeV VH Met Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{miss} > 150$ GeV, $p_T^{miss} > 250$ GeV VH Met Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{miss} > 150$ GeV VH Met Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{miss} > 150$ GeV VH Met Low $N_{lep} = 1$, $ m_{e\gamma} - 89$ GeV > 5 GeV, $p_T^{miss} > 150$ GeV VH Met Thigh $N_{lep} = 1$ GeV,	ttH had BDT4	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, 0.52 < \text{BDT}_{\text{ttH}} < 0.79$
$\begin{array}{lll} \text{VH dilep} & N_{\text{lep}} \geq 2,70 \text{GeV} \leq m_{\ell\ell} \leq 110 \text{GeV} \\ \text{VH lep High} & N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} > 150 \text{GeV} \\ \text{VH lep Low} & N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} > 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 1 \\ \text{VH MET High} & 150 \text{GeV} < E_{\text{T}}^{\text{miss}} < 250 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 9 \text{or} E_{\text{T}}^{\text{miss}} > 250 \text{GeV} \\ \text{VH MET Low} & 80 \text{GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 9 \text{or} E_{\text{T}}^{\text{miss}} > 250 \text{GeV} \\ \text{VH had loose} & 80 \text{GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 8 \\ \text{jet BSM} & p_{\text{T},j1} > 200 \text{GeV} \\ \text{VH had loose} & 60 \text{GeV} < m_{jj} < 120 \text{GeV}, 0.35 < \text{BDT}_{\text{VH}} > 0.78 \\ \text{VBF tight, high} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} > 25 \text{GeV}, \text{BDT}_{\text{VBF}} > 0.47 \\ \text{VBF loose, high} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} > 25 \text{GeV}, -0.32 < \text{BDT}_{\text{VBF}} > 0.47 \\ \text{VBF loose, low} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} > 25 \text{GeV}, \text{BDT}_{\text{VBF}} > 0.87 \\ \text{VBF loose, low} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} < 25 \text{GeV}, \text{BDT}_{\text{VBF}} > 0.87 \\ \text{VBF loose, low} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} < 25 \text{GeV}, 0.26 < \text{BDT}_{\text{VBF}} > 0.87 \\ \text{VBF loose, low} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} < 25 \text{GeV}, 0.26 < \text{BDT}_{\text{VBF}} > 0.87 \\ \text{VBF loose, low} p_{\text{T}}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}}^{Hjj} < 25 \text{GeV}, 0.26 < \text{BDT}_{\text{VBF}} > 0.87 \\ \text{VBF loose, low} p_{\text{T}}^{Hjj} & \Delta \eta_{\text{T}} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j$	tH had 4j1b	$N_{\text{lep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{b-\text{tag}} = 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
$\begin{array}{lll} & \text{VH lep High} & N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{Tiss}}^{\text{miss}}} > 150 \text{GeV} \\ & \text{VH lep Low} & N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{Tiss}}^{\text{miss}}} > 150 \text{GeV}, E_{\text{Tiss}}^{\text{miss}} \text{significance} > 1 \\ & \text{VH MET High} & 150 \text{GeV} < E_{\text{Tiss}}^{\text{miss}} < 250 \text{GeV}, E_{\text{Tiss}}^{\text{miss}} \text{significance} > 9 \text{or} E_{\text{Tiss}}^{\text{miss}} > 250 \text{GeV} \\ & \text{VH MET Low} & 80 \text{GeV} < E_{\text{Tiss}}^{\text{miss}} < 150 \text{GeV}, E_{\text{Tiss}}^{\text{miss}} \text{significance} > 8 \\ & \text{jet BSM} & p_{\text{T,j1}} > 200 \text{GeV} \\ & \text{VH had tight} & 60 \text{GeV} < m_{jj} < 120 \text{GeV}, BDT_{\text{VH}} > 0.78 \\ & \text{VBF tight, high} p_{\text{T}jj}^{Hjj} & (40 m_{jj}) < 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}jj}^{Hjj} > 25 \text{GeV}, BDT_{\text{VBF}} > 0.47 \\ & \text{VBF tight, low} p_{\text{T}jj}^{Hjj} & (40 m_{jj}) > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}jj}^{Hjj} > 25 \text{GeV}, -0.32 < BDT_{\text{VBF}} < 0.47 \\ & \text{VBF loose, low} p_{\text{T}}^{Hjj} & (40 m_{jj}) > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}jj}^{Hjj} > 25 \text{GeV}, BDT_{\text{VBF}} > 0.87 \\ & \text{VBF loose, low} p_{\text{T}}^{Hjj} & (40 m_{jj}) > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\text{T}jj}^{Hjj} > 25 \text{GeV}, BDT_{\text{VBF}} > 0.87 \\ & \text{ggH 2J BSM} & 2 2 \text{jets,} p_{\text{T}}^{T\gamma} \leq 200 \text{GeV} \\ & \text{ggH 2J Med} & 2 2 \text{jets,} p_{\text{T}}^{T\gamma} \in [120, 200] \text{GeV} \\ & \text{ggH 1J BSM} & 1 \text{jet,} p_{\text{T}}^{T\gamma} \in [60, 120] \text{GeV} \\ & \text{ggH 1J BSM} & 1 \text{jet,} p_{\text{T}}^{T\gamma} \in [60, 120] \text{GeV} \\ & \text{ggH 1J Med} & 1 \text{jet,} p_{\text{T}}^{T\gamma} \in [60, 120] \text{GeV} \\ & \text{ggH 1J Low} & 1 \text{jets,} p_{\text{T}}^{T\gamma} \in [60, 120] \text{GeV} \\ & \text{ggH 0J Fwd} & 0 \text{jets,} \text{one photon with} \eta > 0.95 \\ & 0 \text{jets,} \text{one photon with} \eta > 0.95 \\ & 0 \text{jets,} \text{one photon} \text{with} \eta > 0.95 \\ & 0 \text{jets,} \text{one photon} \text{oth} \text{jet} \text{jets} \text{jets} \text{jets} \text{jets} \text{jets} \text{jets} \text{jets} \text{jets} je$	tH had 4j2b	$N_{\text{lep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{b-\text{tag}} \ge 2 (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VH dilep	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VH lep High	$N_{\text{lep}} = 1$, $ m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}$, $p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} > 150 \text{GeV}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VH lep Low	$N_{\text{lep}} = 1$, $ m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}$, $p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} < 150 \text{GeV}$, $E_{\text{T}}^{\text{miss}}$ significance > 1
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$150 \text{GeV} < E_{\text{T}}^{\text{miss}} < 250 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 9 \text{or} E_{\text{T}}^{\text{miss}} > 250 \text{GeV}$
$\begin{array}{lll} & & & & & & & & & & & & \\ \text{VH had tight} & & & & & & & & \\ \text{VH had loose} & & & & & & \\ \text{VBF tight, high } p_{\text{T}}^{Hjj} & & & & & \\ \text{VBF tight, high } p_{\text{T}}^{Hjj} & & & & & \\ \text{VBF loose, high } p_{\text{T}}^{Hjj} & & & & & \\ \text{VBF tight, low } p_{\text{T}}^{Hjj} & & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & & \\ \text{VBF loose, low } p_{\text{T}}^{Hjj} & & \\ \text{VBF loose, low } p_{\text{T}}^{H$	VH MET Low	$80 \mathrm{GeV} < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{significance} > 8$
$\begin{array}{lll} & \text{VH had tight} \\ & \text{VH had loose} \\ & \text{VBF tight, high } p_{Tj}^{Hjj} \\ & \text{VBF loose, high } p_{Tj}^{Hjj} \\ & \text{VBF loose, high } p_{Tj}^{Hjj} \\ & \text{VBF loose, low } p_{T}^{Hjj} \\ & \text{VBF loose, low } p_{T}^{Hjj} \\ & \text{VBF loose, low } p_{Tj}^{Hjj} \\ & VBF loose, l$	jet BSM	_
$\begin{array}{lll} \text{VBF tight, high } p_{Hjj}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{T}^{Hjj} > 25 \text{GeV, BDT}_{\text{VBF}} > 0.47 \\ \text{VBF tight, low } p_{T}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{T}^{Hjj} > 25 \text{GeV, } -0.32 < \text{BDT}_{\text{VBF}} < 0.47 \\ \text{VBF loose, low } p_{T}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{T}^{Hjj} < 25 \text{GeV, BDT}_{\text{VBF}} > 0.87 \\ \text{VBF loose, low } p_{T}^{Hjj} & \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{T}^{Hjj} < 25 \text{GeV, } 0.26 < \text{BDT}_{\text{VBF}} > 0.87 \\ \text{ggH 2J BSM} & \geq 2 \text{jets, } p_{T}^{\gamma\gamma} \geq 200 \text{GeV} \\ \text{ggH 2J Med} & \geq 2 \text{jets, } p_{T}^{\gamma\gamma} \in [120, 200] \text{GeV} \\ \text{ggH 2J Low} & \geq 2 \text{jets, } p_{T}^{\gamma\gamma} \in [60, 120] \text{GeV} \\ \text{ggH 1J BSM} & = 1 \text{jet, } p_{T}^{\gamma\gamma} \geq 200 \text{GeV} \\ \text{ggH 1J Med} & = 1 \text{jet, } p_{T}^{\gamma\gamma} \in [120, 200] \text{GeV} \\ \text{ggH 1J Low} & = 1 \text{jet, } p_{T}^{\gamma\gamma} \in [60, 120] \text{GeV} \\ \text{ggH 1J Low} & = 1 \text{jet, } p_{T}^{\gamma\gamma} \in [0, 60] \text{GeV} \\ \text{ggH 0J Fwd} & = 0 \text{jets, one photon with } \eta > 0.95 \\ \end{array}$	VH had tight	
VBF loose, low $p_{T}^{\gamma \gamma}$ $ \Delta \eta_{jj} > 2$, $ \eta_{\gamma \gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{\gamma \gamma} > 25$ GeV, 0.26 < BDT _{VBF} < 0.87 ggH 2J BSM ≥ 2 jets, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 2J High ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 2J Low ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J BSM $= 1$ jet, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 1J High $= 1$ jet, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$		$60 \text{ GeV} < m_{jj} < 120 \text{ GeV}, 0.35 < \text{BDT}_{VH} < 0.78$
VBF loose, low $p_{T}^{\gamma \gamma}$ $ \Delta \eta_{jj} > 2$, $ \eta_{\gamma \gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{\gamma \gamma} > 25$ GeV, 0.26 < BDT _{VBF} < 0.87 ggH 2J BSM ≥ 2 jets, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 2J High ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 2J Low ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J BSM $= 1$ jet, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 1J High $= 1$ jet, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$	VBF tight, high $p_{T_{t,i}}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T_{tot}}^{Hjj} > 25$ GeV, BDT _{VBF} > 0.47
VBF loose, low $p_{T}^{\gamma \gamma}$ $ \Delta \eta_{jj} > 2$, $ \eta_{\gamma \gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{\gamma \gamma} > 25$ GeV, 0.26 < BDT _{VBF} < 0.87 ggH 2J BSM ≥ 2 jets, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 2J High ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 2J Low ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J BSM $= 1$ jet, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 1J High $= 1$ jet, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$	VBF loose, high $p_{\rm T}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{Hjj} > 25 \text{GeV}$, $-0.32 < \text{BDT}_{\text{VBF}} < 0.47$
VBF loose, low $p_{T}^{\gamma \gamma}$ $ \Delta \eta_{jj} > 2$, $ \eta_{\gamma \gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{\gamma \gamma} > 25$ GeV, 0.26 < BDT _{VBF} < 0.87 ggH 2J BSM ≥ 2 jets, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 2J High ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 2J Low ≥ 2 jets, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J BSM $= 1$ jet, $p_{T}^{\gamma \gamma} \geq 200$ GeV ggH 1J High $= 1$ jet, $p_{T}^{\gamma \gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_{T}^{\gamma \gamma} \in [60, 120]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$	VBF tight, low $p_{\rm T}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{\rm T}^{Hjj} < 25$ GeV, BDT _{VBF} > 0.87
$\begin{array}{lll} \operatorname{ggH} \ 2\operatorname{J} \ \operatorname{BSM} & \geq 2 \ \operatorname{jets}, \ p_{\mathrm{T}}^{\gamma\gamma} \geq 200 \ \operatorname{GeV} \\ \operatorname{ggH} \ 2\operatorname{J} \ \operatorname{High} & \geq 2 \ \operatorname{jets}, \ p_{\mathrm{T}}^{\gamma\gamma} \in [120,200] \ \operatorname{GeV} \\ \operatorname{ggH} \ 2\operatorname{J} \ \operatorname{Med} & \geq 2 \ \operatorname{jets}, \ p_{\mathrm{T}}^{\gamma\gamma} \in [60,120] \ \operatorname{GeV} \\ \operatorname{ggH} \ 2\operatorname{J} \ \operatorname{Low} & \geq 2 \ \operatorname{jets}, \ p_{\mathrm{T}}^{\gamma\gamma} \in [0,60] \ \operatorname{GeV} \\ \operatorname{ggH} \ 1\operatorname{J} \ \operatorname{BSM} & = 1 \ \operatorname{jet}, \ p_{\mathrm{T}}^{\gamma\gamma} \geq 200 \ \operatorname{GeV} \\ \operatorname{ggH} \ 1\operatorname{J} \ \operatorname{High} & = 1 \ \operatorname{jet}, \ p_{\mathrm{T}}^{\gamma\gamma} \in [120,200] \ \operatorname{GeV} \\ \operatorname{ggH} \ 1\operatorname{J} \ \operatorname{Med} & = 1 \ \operatorname{jet}, \ p_{\mathrm{T}}^{\gamma\gamma} \in [60,120] \ \operatorname{GeV} \\ \operatorname{ggH} \ 1\operatorname{J} \ \operatorname{Low} & = 1 \ \operatorname{jet}, \ p_{\mathrm{T}}^{\gamma\gamma} \in [0,60] \ \operatorname{GeV} \\ \operatorname{ggH} \ 0\operatorname{J} \ \operatorname{Fwd} & = 0 \ \operatorname{jets}, \ \operatorname{one} \ \operatorname{photon} \ \operatorname{with} \ \eta > 0.95 \end{array}$	VBF loose, low $p_{\rm T}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{\rm T}^{Hjj} < 25 \text{GeV}$, $0.26 < \text{BDT}_{\rm VBF} < 0.87$
ggH 2J Med ≥ 2 jets, $p_T^{\gamma\gamma} \in [60, 120]$ GeV ggH 2J Low ≥ 2 jets, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 1J BSM $= 1$ jet, $p_T^{\gamma\gamma} \geq 200$ GeV ggH 1J High $= 1$ jet, $p_T^{\gamma\gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_T^{\gamma\gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$	ggH 2J BSM	$\geq 2 \text{ jets}, p_{\mathrm{T}}^{\gamma\gamma} \geq 200 \mathrm{GeV}$
ggH 2J Low ≥ 2 jets, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 1J BSM $= 1$ jet, $p_T^{\gamma\gamma} \geq 200$ GeV ggH 1J High $= 1$ jet, $p_T^{\gamma\gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_T^{\gamma\gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$	ggH 2J High	
ggH 1J BSM = 1 jet, $p_T^{\gamma\gamma} \ge 200 \text{ GeV}$ ggH 1J High = 1 jet, $p_T^{\gamma\gamma} \in [120, 200] \text{ GeV}$ ggH 1J Med = 1 jet, $p_T^{\gamma\gamma} \in [60, 120] \text{ GeV}$ ggH 1J Low = 1 jet, $p_T^{\gamma\gamma} \in [0, 60] \text{ GeV}$ ggH 0J Fwd = 0 jets, one photon with $ \eta > 0.95$	ggH 2J Med	≥ 2 jets, $p_{\mathrm{T}}^{\bar{\gamma}\gamma} \in [60, 120]$ GeV
ggH 1J High $= 1$ jet, $p_T^{\gamma\gamma} \in [120, 200]$ GeV ggH 1J Med $= 1$ jet, $p_T^{\gamma\gamma} \in [60, 120]$ GeV ggH 1J Low $= 1$ jet, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 0J Fwd $= 0$ jets, one photon with $ \eta > 0.95$	ggH 2J Low	$\geq 2 \text{ jets}, p_{\mathrm{T}}^{\gamma\gamma} \in [0, 60] \text{ GeV}$
ggH 1J Med = 1 jet, $p_T^{\gamma\gamma} \in [60, 120]$ GeV ggH 1J Low = 1 jet, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 0J Fwd = 0 jets, one photon with $ \eta > 0.95$	ggH 1J BSM	* * 1
ggH 1J Low = 1 jet, $p_T^{\gamma\gamma} \in [0, 60]$ GeV ggH 0J Fwd = 0 jets, one photon with $ \eta > 0.95$	ggH 1J High	$= 1 \text{ jet}, p_{\mathrm{T}}^{\gamma\gamma} \in [120, 200] \text{ GeV}$
ggH 0J Fwd = 0 jets, one photon with $ \eta > 0.95$	ggH 1J Med	
	ggH 1J Low	$= 1 \text{ jet}, p_{\mathrm{T}}^{\gamma\gamma} \in [0, 60] \text{ GeV}$
ggH 0J Cen = 0 jets, two photons with $ \eta \le 0.95$	ggH 0J Fwd	= 0 jets, one photon with $ \eta > 0.95$
	ggH 0J Cen	= 0 jets, two photons with $ \eta \le 0.95$

H→γγ STXS to categories

H→γγ STXS

Process	Measurement region	Particle-level stage-1 region
$ggH + gg \rightarrow Z(\rightarrow qq)H$	0-jet	0-jet
	1-jet, $p_{\mathrm{T}}^{H} < 60 \text{ GeV}$	1-jet, $p_{\mathrm{T}}^{H} < 60 \text{ GeV}$
	1-jet, $60 \le p_{\rm T}^H < 120 \text{ GeV}$	1-jet, $60 \le p_{\rm T}^H < 120 \text{ GeV}$
	1-jet, $120 \le p_{\rm T}^H < 200 \text{ GeV}$	1-jet, $120 \le p_{\rm T}^H < 200 \text{ GeV}$
	≥ 1 -jet, $p_{\rm T}^{H} > 200 {\rm GeV}$	1-jet, $p_{\rm T}^{H} > 200 {\rm GeV}$
	***	\geq 2-jet, $p_{\mathrm{T}_{r}}^{H} > 200 \text{ GeV}$
	\geq 2-jet, p_{T}^{H} < 200 GeVor VBF-like	\geq 2-jet, $p_{\mathrm{T}}^{H} < 60 \text{ GeV}$
		≥ 2 -jet, $60 \leq p_{\rm T}^H < 120 \text{ GeV}$
		\geq 2-jet, $120 \leq p_{\rm T}^H < 200 \text{ GeV}$
		VBF-like, $p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV}$ VBF-like, $p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV}$
		VBF-like, $p_{\rm T}^{Hjj} \ge 25 \text{ GeV}$
$qq' \rightarrow Hqq' \text{ (VBF + }VH\text{)}$	$p_{\mathrm{T}}^{j} < 200 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{j} < 200 \text{ GeV}, \text{ VBF-like}, p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV}$ $p_{\mathrm{T}}^{j} < 200 \text{ GeV}, \text{ VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV}$
	•	$p_{\mathrm{T}}^{j} < 200 \text{ GeV}, \text{ VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV}$
		$p_{\rm T}^{j}$ < 200 GeV, VH-like
		$p_{\rm T}^{j}$ < 200 GeV, Rest
	$p_{\rm T}^{j} > 200 {\rm GeV}$	$p_{\rm T}^{j} > 200 {\rm GeV}$
VH (leptonic decays)	VH leptonic	$q\bar{q} \rightarrow ZH, p_{\rm T}^Z < 150 {\rm GeV}$
, ,	•	$q\bar{q} \to ZH$, 150 < $p_{\rm T}^Z$ < 250 GeV, 0-jet
		$q\bar{q} \to ZH$, 150 < $p_{\rm T}^{Z}$ < 250 GeV, \geq 1-jet
		$q\bar{q} \rightarrow ZH, p_{\rm T}^Z > 250 {\rm GeV}$
		$q\bar{q} \rightarrow WH, p_{\rm T}^{W} < 150 \text{ GeV}$
		$q\bar{q} \to WH$, $150 < p_{\rm T}^W < 250$ GeV, 0-jet
		$q\bar{q} \to WH$, 150 < $p_{\rm T}^{\dot{W}}$ < 250 GeV, \geq 1-jet
		$q\bar{q} \rightarrow WH, p_{\rm T}^W > 250 \text{ GeV}$
		$gg \rightarrow ZH, p_{\rm T}^{\rm Z} < 150 {\rm GeV}$
		$gg \rightarrow ZH, p_{\rm T}^Z > 150 \text{ GeV}, 0\text{-jet}$
		$gg \rightarrow ZH, p_{\rm T}^Z > 150 \text{ GeV}, \ge 1\text{-jet}$
Top-associated production	top	$t\bar{t}H$
		W-associated $tH(tHW)$
		t-channel $tH(tHq)$
bbH	merged w/ ggH	bbH

H→γγ additional results

Measurement	Exp. Z_0	Obs. Z_0
$\mu_{ m VBF}$	2.6σ	4.9σ
$\mu_{ m VH}$	1.4σ	0.8σ
$\mu_{ ext{top}}$	1.8σ	1.0σ

$$\mu_{\rm ggH} = 0.81^{+0.19}_{-0.18} = 0.81 \pm 0.16 \,({\rm stat.}) \,^{+0.07}_{-0.06} \,({\rm exp.}) \,^{+0.07}_{-0.05} \,({\rm theo.})$$

$$\mu_{\rm VBF} = 2.0^{+0.6}_{-0.5} = 2.0 \pm 0.5 \,({\rm stat.}) \,^{+0.3}_{-0.2} \,({\rm exp.}) \,^{+0.3}_{-0.2} \,({\rm theo.})$$

$$\mu_{\rm VH} = 0.7^{+0.9}_{-0.8} = 0.7 \pm 0.8 \,({\rm stat.}) \,^{+0.2}_{-0.2} \,({\rm exp.}) \,^{+0.2}_{-0.1} \,({\rm theo.})$$

$$\mu_{\rm top} = 0.5^{+0.6}_{-0.6} = 0.5^{+0.6}_{-0.5} \,({\rm stat.}) \,^{+0.1}_{-0.1} \,({\rm exp.}) \,^{+0.1}_{-0.0} \,({\rm theo.})$$

Measurement	Observed	Exp. Limit	Exp. Limit	+2 σ	+1 σ	-1σ	-2σ
		$(\mu_i = 1)$	$(\mu_i=0)$				
$\mu_{ m VH}$	2.3	2.5	1.5	3.1	2.2	1.1	0.8
$\mu_{ ext{top}}$	1.7	2.3	1.2	2.6	1.8	0.9	0.6

Process	Result		Uncerta	SM prediction		
$(y_H < 2.5)$	[fb]	Total	Stat.	Exp.	Theo.	[fb]
ggH	82	+19 -18	(±16	+7 -6	+5 -4)	102+5
VBF	16	+5 -4	(±4	±2	$\begin{pmatrix} +3 \\ -2 \end{pmatrix}$	8.0 ± 0.2
VH	3	±4	(+4 -3	±1	$\begin{pmatrix} +1 \\ -0 \end{pmatrix}$	4.5 ± 0.2
Тор	0.7	+0.9 -0.7	(+0.8 -0.7	+0.2 -0.1	+0.2 -0.0	1.3 ± 0.1

H→γγ fiducial phase-space

Objects	Definition
Photons	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37, \ \ p_{\rm T}^{\rm iso,0.2}/p_{\rm T}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{GeV}$, $ y < 4.4$
Leptons, ℓ	<i>e</i> or μ , $p_{\rm T} > 15$ GeV, $ \eta < 2.47$ for <i>e</i> (excluding 1.37 < $ \eta < 1.52$) and $ \eta < 2.7$ for μ
Fiducial region	Definition
Diphoton fiducial	$N_{\gamma} \ge 2$, $p_{\rm T}^{\gamma_1} > 0.35 m_{\gamma\gamma} = 43.8 {\rm GeV}$, $p_{\rm T}^{\gamma_2} > 0.25 m_{\gamma\gamma} = 31.3 {\rm GeV}$
VBF-enhanced	Diphoton fiducial, $N_j \ge 2$ with $p_T^{\text{jet}} > 25$ GeV,
	$m_{jj} > 400 \text{ GeV}, \ \Delta y_{jj} > 2.8, \ \Delta \phi_{\gamma\gamma,jj} > 2.6$
$N_{\text{lepton}} \ge 1$	Diphoton fiducial, $N_{\ell} \ge 1$
${ m High}~E_{ m T}^{ m miss}$	Diphoton fiducial, $E_{\rm T}^{\rm miss} > 80$ GeV, $p_{\rm T}^{\gamma\gamma} > 80$ GeV
$t\bar{t}H$ -enhanced	Diphoton fiducial, $(N_j \ge 4, N_{b-jets} \ge 1)$ or $(N_j \ge 3, N_{b-jets} \ge 1, N_{\ell} \ge 1)$

- VBF-enhanced:
 m(jj)>400GeV; Δy_{jj}> 2.8; |Δφ_{γγ,jj}| > 2.6
 [32%ggH]
- VH-enhanced:1-el or 1-muon, pT(lep)>15GeV
- high-MET: MET>80GeV; pT(γγ)>80GeV
- ttH-enhanced:
 1lepton+3jet, or 0lepton+4jet
 at least 1-bottom-jet

H→γγ differential

H→γγ differential

H→γγ differential

H→γγ differential uncertainties

Source		Uncertaint	y in fiducial c	ross section	
	Diphoton	VBF-enhanced	$N_{\text{lepton}} \ge 1$	$t\bar{t}H$ -enhanced	High $E_{ m T}^{ m miss}$
Fit (stat.)	17%	22%	72%	176%	53%
Fit (syst.)	6%	9%	27%	138%	13%
Photon energy scale & resolution	4.3%	3.5%	3.1%	10%	4.1%
Background modelling	4.2%	7.8%	26.7%	138%	12.2%
Photon efficiency	1.8%	1.8%	1.8%	1.8%	1.9%
Jet energy scale/resolution	-	8.9%	-	4.5%	6.9%
b-jet flavor tagging	-	-	-	3%	-
Lepton selection	-	-	0.7%	0.2%	-
Pileup	1.1%	2.9%	1.3%	2.5%	2.5%
Theoretical modeling	0.1%	4.5%	4.0%	8.1%	31%
Signal composition	0.1%	4.5%	3.1%	8.1%	25%
Higgs boson $p_{\rm T}^H \& y_H $	0.1%	0.9%	0.2%	0.7%	0.1%
UE/PS	-	0.3%	0.7%	1.1%	31%
Luminosity	3.2%	3.2%	3.2%	3.2%	3.2%
Total	18%	26%	77%	224%	63%

H→γγ differential uncertainties

JHEP 10 (2017) 132 36.1fb⁻¹ @ 13TeV

- ▶ fiducial cross-section from 115 < m_{4I} < 130 GeV phase space in fair agreement with SM prediction
- Fiducial cross-section separately in each lepton sub-channel, and combined

$$\sigma^{meas}_{fid} = 3.62 \pm 0.50 (stat)^{+0.25}_{-0.20} (sys) \ fb$$

$$\sigma^{SM}_{fid} = 2.91 \pm 0.13 \ fb$$

 Fiducial results also extrapolated to the total phase space (right box)

H→ZZ* STXS to categories

$H \rightarrow ZZ^*$

Reconstructed event category	BDT discriminant	Input variables
0j	BDT_{ggF}	$p_{\mathrm{T}}^{4\ell},\eta_{4\ell},D_{ZZ^*}$
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Low	$\mathrm{BDT}_{\mathrm{VBF}_{++}}^{1j-p_{\mathrm{T}}^{4\ell}\mathrm{-Low}}$	$p_{\mathrm{T}}^{j},\eta_{j},\Delta R(j,4\ell)$
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Med	$\mathrm{BDT}_{\mathrm{VBF}}^{1j-p_{\mathrm{T}}^{4\ell}\mathrm{-Med}}$	$p_{\mathrm{T}}^{j}, \eta_{j}, \Delta R(j, 4\ell)$
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	-	-
VBF-enriched- p_{T}^{j} -Low	BDT_{VBF}	$m_{jj}, \Delta\eta_{jj}, p_{\mathrm{T}}^{j1}, p_{\mathrm{T}}^{j2}, \eta_{4\ell}^*, \Delta R_{jZ}^{\mathrm{min}}, (p_{\mathrm{T}}^{4\ell jj})_{\mathrm{constrained}}$
VBF-enriched- $p_{ m T}^{j}$ -High	-	-
VH-Had-enriched	$\mathrm{BDT}_{VH ext{-}\mathrm{Had}}$	$m_{jj}, \Delta \eta_{jj}, p_{\mathrm{T}}^{j1}, p_{\mathrm{T}}^{j2}, \eta_{4\ell}^*, \Delta R_{jZ}^{\mathrm{min}}, \eta_{j1}$
VH-Lep-enriched	-	-
ttH-enriched	-	-

$H \rightarrow ZZ^*$

Decay	Signal	Signal	ZZ*	Other	Total	Observed
channel	(full mass range)		background	backgrounds	expected	
-4μ	21.0 ± 1.7	19.7 ± 1.6	7.5 ± 0.6	1.00 ± 0.21	28.1 ± 1.7	32
$2e2\mu$	15.0 ± 1.2	13.5 ± 1.0	5.4 ± 0.4	0.78 ± 0.17	19.7 ± 1.1	30
$2\mu 2e$	11.4 ± 1.1	10.4 ± 1.0	3.57 ± 0.35	1.09 ± 0.19	15.1 ± 1.0	18
4 <i>e</i>	11.3 ± 1.1	9.9 ± 1.0	3.35 ± 0.32	1.01 ± 0.17	14.3 ± 1.0	15
Total	59 ± 5	54 ± 4	19.7 ± 1.5	3.9 ± 0.5	77 ± 4	95

•

		Experimental uncertainties [%]				T	heory u	ncertainties [c	%]
Production	Lumi	$e, \mu,$	Jets, flavour	Higgs	Reducible	ZZ^*		Signal theor	у
bin		pile-up	tagging	mass	backgr.	backgr.	PDF	QCD scale	Shower
Inclusive cro	oss sectio	on							
	4.1	3.1	0.7	0.8	0.9	1.9	0.3	0.8	1.2
Stage-0 prod	luction b	oin cross s	ections						
ggF	4.3	3.4	1.1	1.2	1.1	1.8	0.5	1.8	1.4
VBF	2.6	2.7	10	1.3	0.9	2.2	1.6	11	5.3
$V\!H$	3.0	2.7	11	1.6	1.7	5.9	2.1	12	3.7
ttH	3.6	2.9	19	< 0.1	2.4	1.9	3.3	7.9	2.1

H→ZZ*

Leptons and jets

Muons: $p_{\rm T} > 5 \text{ GeV}, |\eta| < 2.7$ Electrons: $p_{\rm T} > 7 \text{ GeV}, |\eta| < 2.47$ Jets: $p_{\rm T} > 30 \text{ GeV}, |y| < 4.4$

Jet–lepton overlap removal: $\Delta R(\text{jet}, \ell) > 0.1 (0.2)$ for muons (electrons)

Lepton selection and pairing

Lepton kinematics: $p_T > 20, 15, 10 \text{ GeV}$

Leading pair (m_{12}) : SFOS lepton pair with smallest $|m_Z - m_{\ell\ell}|$

Subleading pair (m_{34}) : remaining SFOS lepton pair with smallest $|m_Z - m_{\ell\ell}|$

Event selection (at most one quadruplet per channel)

Mass requirements: $50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $12 \text{ GeV} < m_{34} < 115 \text{ GeV}$

Lepton separation: $\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$ for same- (different-)flavour leptons

 J/ψ veto: $m(\ell_i, \ell_i) > 5$ GeV for all SFOS lepton pairs

Mass window: $115 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$

Final state	SM Higgs	ZZ*	Z + jets, $t\bar{t}$	Expected	Observed
			WZ, ttV , VVV		
-4μ	20.1 ± 1.6	9.8 ± 0.8	1.3 ± 0.3	31.2 ± 1.8	33
4 <i>e</i>	10.6 ± 1.0	4.4 ± 0.4	1.3 ± 0.2	16.3 ± 1.1	16
$2e2\mu$	14.2 ± 1.1	7.1 ± 0.5	1.0 ± 0.2	22.3 ± 1.2	32
$2\mu 2e$	10.8 ± 1.0	4.6 ± 0.5	1.4 ± 0.3	16.8 ± 1.1	21
Total	56 ± 4	25.9 ± 2.0	5.0 ± 0.7	87 ± 5	102

$$\sigma_{i,\text{fid}} = \sigma_i \times A_i \times \mathcal{B} = \frac{N_{i,\text{fit}}}{\mathcal{L} \times C_i}, \quad C_i = \frac{N_{i,\text{reco}}}{N_{i,\text{part}}},$$

$$\sigma_{i,\text{fid}} = \sigma_i \times A_i \times \mathcal{B} = \frac{N_{i,\text{fit}}}{\mathcal{L} \times C_i}, \quad C_i = \frac{N_{i,\text{reco}}}{N_{i,\text{part}}},$$

Cross section [fb]	Data	(± (stat) ±	(sys)	LHCXSWG prediction	<i>p</i> -value [%]
$\sigma_{4\mu}$	0.92	+0.25 -0.23	+0.07 -0.05	0.880 ± 0.039	88
σ_{4e}	0.67	+0.28 -0.23	+0.08 -0.06	0.688 ± 0.031	96
$\sigma_{2\mu 2e}$	0.84	+0.28 -0.24	+0.09 -0.06	0.625 ± 0.028	39
$\sigma_{2e2\mu}$	1.18	+0.30 -0.26	+0.07 -0.05	0.717 ± 0.032	7
$\sigma_{4\mu+4e}$	1.59	+0.37 -0.33	+0.12 -0.10	1.57 ± 0.07	65
$\sigma_{2\mu 2e+2e2\mu}$	2.02	+0.40 -0.36	+0.14 -0.11	1.34 ± 0.06	6
$\sigma_{ m sum}$	3.61	± 0.50	+0.26 -0.21	2.91 ± 0.13	19
$\sigma_{ m comb}$	3.62	± 0.50	+0.25 -0.20	2.91 ± 0.13	18
$\sigma_{ m tot}$ [pb]	69	+10 -9	±5	55.6 ± 2.5	19

Higgs mass measurement

Higgs mass - only free parameter of the SM Higgs sector

ATLAS-CONF-2017-046

► clear and narrow m_H peak over smooth background provides minimal model dependence in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ channels

36.1fb⁻¹ @ 13TeV

- stat. uncertainty depending on mass resolution and number of events
- syst. uncertainty from momentum/energy scale resolution of e/γ/μ

Electrons / photons

- reconstruction seeded by EM cluster electron: matching track from primary vertex converted γ: 1- or 2-track secondary vertex unconverted γ
- ► calibration based on Z→ee data/MC Separately for electrons, unconverted photons, converted photons - with BDT technique

Muons

- combined track-fit from ID and MS
- calibration based on J/ψ→μμ and Z→μμ
- ▶ especially critical for H→4l low-pT events

Higgs mass measurement - H→4I

4-lepton selection: I-1I+1I-2I+2I

- 50 < m_{lead}(II) < 106 GeV constrain to m_Z brings
 15% resolution improvement
- ► m_{sub-lead}(II) > 12 GeV
- ► 110 < **m**_{4-lepton} < 135 GeV

Classified in 16-categories

- 4 lepton-pair channels
 4e, 4μ, 2e2μ, 2μ2e
- 4 multivariate BDT regions

Per-event invariant mass PDF as convolution of the 4 leptons energy response functions (depending on lepton flavor, η , p_T)

inclusive

Systematic effect	Uncertainty on $m_H^{ZZ^*}$ [MeV]
Muon momentum scale	40
Electron energy scale	20
Background modelling	10
Simulation statistics	8

Higgs mass measurement - H→4I

4-lepton selection: I-1I+1I-2I+2I

- ► 50 < m_{lead}(II) < 106 GeV constrain to m_Z brings
 15% resolution improvement
- ► m_{sub-lead}(II) > 12 GeV
- ► 110 < **m**_{4-lepton} < 135 GeV

Classified in 16-categories

- 4 lepton-pair channels
 4e, 4μ, 2e2μ, 2μ2e
- 4 multivariate BDT regions

Dominant channels are 4μ and 2e2μ, where the sub-leading lepton pair is μμ

(clearly stat. dominated)

Systematic effect	Uncertainty on $m_H^{ZZ^*}$ [MeV]
Muon momentum scale	40
Electron energy scale	20
Background modelling	10
Simulation statistics	8

Higgs mass measurement - H→γγ

Analysis strongly inherited from coupling / cross-section selection

- 31-categories (STXS stage-1) optimising sensitivity to prod. modes
- 1 signal-model per category, different Gaussian resolution, different non-Gaussian tails
- ▶ signal PDF(m_{yy}) 2-sided Crystal Ball
- background model from empirical analytical functions

 $m^{\gamma} = 125.11 \pm 0.21(stat) \pm 0.36(syst) GeV$

Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
LAr cell non-linearity	±200
LAr layer calibration	±190
Non-ID material	±120
Lateral shower shape	±110
ID material	±110
Conversion reconstruction	±50
$Z \rightarrow ee$ calibration	±50
Background model	±50
Primary vertex effect on mass scale	±40
Resolution	+20 -30
Signal model	± 20

ttH(multilepton categories)

 $1\ell+2\tau_{had}$

ttH(multilepton categories)

ttH(multilepton categories)

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{\rm had}$	2ℓ SS+ $1\tau_{had}$	2ℓ OS+ $1\tau_{had}$	3ℓ + $1\tau_{\rm had}$
Light lepton	2T*	1L*, 2T*	2L, 2T	1T	2T*	$2L^{\dagger}$	1L [†] , 2T
$ au_{ m had}$	0M	0M	_	1T, 1M	1 M	1 M	1 M
$N_{\rm jets}$, $N_{b-{\rm jets}}$	\geq 4, = 1, 2	$\geq 2, \geq 1$	\geq 2, \geq 1	$\geq 3, \geq 1$	\geq 4, \geq 1	\geq 3, \geq 1	$\geq 2, \geq 1$

Channel	Selection criteria
Common	$N_{\rm jets} \ge 2$ and $N_{b-\rm jets} \ge 1$
2ℓSS	Two very tight light leptons with $p_T > 20 \text{ GeV}$
	Same-charge light leptons
	Zero medium $\tau_{\rm had}$ candidates
	$N_{\rm jets} \ge 4$ and $N_{b-\rm jets} < 3$
3ℓ	Three light leptons with $p_T > 10$ GeV; sum of light-lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_T > 15 \text{ GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium $\tau_{\rm had}$ candidates
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
<i>4ℓ</i>	Four light leptons; sum of light-lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)
1ℓ +2 $\tau_{\rm had}$	One tight light lepton with $p_T > 27 \text{ GeV}$
	Two medium τ_{had} candidates of opposite charge, at least one being tight
	$N_{\rm jets} \ge 3$
2ℓ SS+ $1\tau_{had}$	Two very tight light leptons with $p_T > 15 \text{ GeV}$
	Same-charge light leptons
	One medium $\tau_{\rm had}$ candidate, with charge opposite to that of the light leptons
	$N_{\rm jets} \ge 4$
	m(ee) - 91.2 GeV > 10 GeV for ee events
2ℓ OS+ $1\tau_{had}$	Two loose and isolated light leptons with $p_T > 25$, 15 GeV
	One medium $\tau_{\rm had}$ candidate
	Opposite-charge light leptons
	One medium $\tau_{\rm had}$ candidate
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for the SFOC pair
	$N_{\rm jets} \ge 3$
3ℓ + $1\tau_{\rm had}$	3ℓ selection, except:
	One medium $ au_{had}$ candidate, with charge opposite to the total charge of the light leptons
	The two same-charge light leptons must be tight and have $p_T > 10 \text{ GeV}$
	The opposite-charge light lepton must be loose and isolated

ttH(multilepton)

ttH(multilepton)

ttH(multilepton)

Uncertainty Source	Δ	μ
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavor tagging and τ_{had} identification	+0.11	-0.09
$t\bar{t}W$ modeling	+0.10	-0.09
$t\bar{t}Z$ modeling	+0.08	-0.07
Other background modeling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04
Fake $\tau_{\rm had}$ estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation sample size	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalization	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \geq 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalization	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of μ_R , μ_F , h_{damp} and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \ge 1c$ ME vs. inclusive	MG5_aMC@NLO+Herwig++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \ge 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (MSTW)}$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (NNPDF)}$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ UE}$	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 3b$ normalization	Up or down by 50%	$t\bar{t} + \ge 1b$

Pre-fit impact on μ : Δμ $\dot{\theta} = \hat{\theta} - \Delta \theta$ $\theta = \hat{\theta} + \Delta \theta$ -0.50 0.5 -1 Post-fit impact on μ : **ATLAS** $\theta = \hat{\theta} + \Delta \hat{\theta} \qquad \theta = \hat{\theta} - \Delta \hat{\theta}$ \sqrt{s} = 13 TeV, 36.1 fb⁻¹ - Nuis. Param. Pull tī+≥1b: SHERPA5F vs. nominal tt+≥1b: SHERPA4F vs. nominal tī+≥1b: PS & hadronization tt+≥1b: ISR / FSR tīH: PS & hadronization b-tagging: mis-tag (light) NP I $k(tt+\ge 1b) = 1.24 \pm 0.10$ Jet energy resolution: NP I tīH: cross section (QCD scale) tt+≥1b: tt+≥3b normalization tī+≥1c: SHERPA5F vs. nominal tī+≥1b: shower recoil scheme tt+≥1c: ISR / FSR Jet energy resolution: NP II tī+light: PS & hadronization Wt: diagram subtr. vs. nominal b-tagging: efficiency NP I b-tagging: mis-tag (c) NP I E^{miss}: soft-term resolution b-tagging: efficiency NP II -2 -1.5 -1 -0.5 0 0.5 1.5 $(\hat{\theta}-\theta_0)/\Delta\theta$

46
31
16
14
)5
11
)5
80
)3
)2
)4
54
10
03
20
29
51

$Z+{ m jets}$				
Z + ll normalisation	18%			
Z + cl normalisation	23%			
Z + bb normalisation	Floating (2-jet, 3-jet)			
Z + bc-to- $Z + bb$ ratio	30-40%			
Z + cc-to- $Z + bb$ ratio	13-15%			
Z + bl-to- $Z + bb$ ratio	20-25%			
0-to-2 lepton ratio	7%			
$m_{bb},p_{ m T}^V$	\mathbf{S}			
	$W+{ m jets}$			
W + ll normalisation	32%			
W+cl normalisation	37%			
W + bb normalisation	Floating (2-jet, 3-jet)			
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)			
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)			
W+cc-to- $W+bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)			
0-to-1 lepton ratio	5%			
W + HF CR to SR ratio	10% (1-lepton)			
$m_{bb},p_{ m T}^V$	S			
•	ated between the 0+1 and 2-lepton channels)			
$tar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)			
0-to-1 lepton ratio	8%			
2-to-3-jet ratio	9% (0+1 lepton only)			
W + HF CR to SR ratio	25%			
$m_{bb},p_{ m T}^V$	S			
Single top quark				
Cross-section	4.6% (s-channel), 4.4% (t-channel), 6.2% (Wt)			
Acceptance 2-jet	17% (t-channel), $35%$ (Wt)			
Acceptance 3-jet	20% (t-channel), $41%$ (Wt)			
$m_{bb},p_{ m T}^V$	S $(t$ -channel, $Wt)$			
Multi-jet (1-lepton)				
Normalisation	$60-100\% \; ext{(2-jet)}, \; 100-400\% \; ext{(3-jet)}$			
BDT template	S			

Process	Normalisation factor	
$t\bar{t}$ 0- and 1-lepton	0.90 ± 0.08	
$tar{t}$ 2-lepton 2-jet	0.97 ± 0.09	
$tar{t}$ 2-lepton 3-jet	1.04 ± 0.06	
$W + { m HF} { m 2-jet}$	1.22 ± 0.14	
$W + \mathrm{HF} 3 ext{-jet}$	1.27 ± 0.14	
$Z + \mathrm{HF} 2$ -jet	1.30 ± 0.10	
Z + HF 3-jet	1.22 ± 0.09	

		Categories			
Channel	Channel SR/CR		$T < p_{\mathrm{T}}^V < 150\mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 150\mathrm{GeV}$	
	.5=5/ 5=5	2 jets	3 jets	2 jets	3 jets
0-lepton	SR	_	_	BDT	BDT
1-lepton	SR	_		BDT	BDT
2-lepton	SR	BDT	BDT	BDT	BDT
1-lepton	$W + \mathrm{HF} \ \mathrm{CR}$	_		Yield	Yield
2-lepton	$e\mu~{ m CR}$	m_{bb}	m_{bb}	Yield	m_{bb}

VH(cc)

https://arxiv.org/pdf/1802.04329.pdf

Sample	Yield, 50 GeV $< m_{c\bar{c}} < 200$ GeV			eV	
Sample	1 <i>c</i> -t	ag	2 c-tags		
	$75 \le p_{\mathrm{T}}^{Z} < 150 \mathrm{GeV}$	$p_{\rm T}^Z \ge 150{\rm GeV}$	$75 \le p_{\mathrm{T}}^{Z} < 150 \mathrm{GeV}$	$p_{\rm T}^{\rm Z} \ge 150{\rm GeV}$	
Z + jets	69400 ± 500	15650 ± 180	5320 ± 100	1280 ± 40	
ZW	750 ± 130	290 ± 50	53 ± 13	20 ± 5	
ZZ	490 ± 70	180 ± 28	55 ± 18	26 ± 8	
$tar{t}$	2020 ± 280	130 ± 50	240 ± 40	13 ± 6	
$ZH(bar{b})$	32 ± 2	19.5 ± 1.5	4.1 ± 0.4	2.7 ± 0.2	
$ZH(c\bar{c})$ (SM)	$-143 \pm 170 (2.4)$	$-84 \pm 100 (1.4)$	$-30 \pm 40 \ (0.7)$	$-20 \pm 29 \ (0.5)$	
Total	72500 ± 320	16180 ± 140	5650 ± 80	1320 ± 40	
Data	72504	16181	5648	1320	

The observed upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow \bar{c}c)$ is 2.7 pb at the 95% CL (expected 3.9 pb)

observed(expected) upper limit on μ at the 95% CL of 110 (150+80–40)

Boosted Higgs rates

Careful: large corrections (in different directions)

ggH cross-section

Using these input parameters, our current best prediction for the production cross section of a Higgs boson with a mass $m_H=125~{\rm GeV}$ at the LHC with a centre-of-mass energy of 13 TeV is

$$\sigma = 48.58 \,\text{pb}_{-3.27 \,\text{pb} \,(-6.72\%)}^{+2.22 \,\text{pb} \,(+4.56\%)} \,(\text{theory}) \pm 1.56 \,\text{pb} \,(3.20\%) \,(\text{PDF+}\alpha_s) \,. \tag{I.4.3}$$

The central value in eq. (I.4.3), computed at the central scale $\mu_F = \mu_R = m_H/2$, is the combination of all the effects considered in eq. (I.4.1). The breakdown of the different effects is:

$$48.58 \, \mathrm{pb} = 16.00 \, \mathrm{pb} \qquad (+32.9\%) \qquad (\mathrm{LO}, \mathrm{rEFT}) \\ + 20.84 \, \mathrm{pb} \qquad (+42.9\%) \qquad (\mathrm{NLO}, \mathrm{rEFT}) \\ - 2.05 \, \mathrm{pb} \qquad (-4.2\%) \qquad ((t, b, c), \mathrm{exact \, NLO}) \\ + 9.56 \, \mathrm{pb} \qquad (+19.7\%) \qquad (\mathrm{NNLO}, \mathrm{rEFT}) \\ + 0.34 \, \mathrm{pb} \qquad (+0.7\%) \qquad (\mathrm{NNLO}, 1/m_t) \\ + 2.40 \, \mathrm{pb} \qquad (+4.9\%) \qquad (\mathrm{EW}, \mathrm{QCD-EW}) \\ + 1.49 \, \mathrm{pb} \qquad (+3.1\%) \qquad (\mathrm{N}^3\mathrm{LO}, \mathrm{rEFT})$$

δ (scale)	δ (trunc)	$\delta(\text{PDF-TH})$	$\delta(EW)$	$\delta(t,b,c)$	$\delta(1/m_t)$
$+0.10~\mathrm{pb} \ -1.15~\mathrm{pb}$	$\pm 0.18~\mathrm{pb}$	$\pm 0.56~\mathrm{pb}$	$\pm 0.49~\mathrm{pb}$	$\pm 0.40~\mathrm{pb}$	±0.49 pb
$^{+0.21\%}_{-2.37\%}$	$\pm 0.37\%$	$\pm 1.16\%$	±1%	$\pm 0.83\%$	±1%

$H \rightarrow \tau \tau$

- second largest BR(fermions): lower than H(bb) but cleaner signature
- 3 analysis channels: $\tau_{lep}\tau_{lep}$ + $\tau_{lep}\tau_{had}$ + $\tau_{had}\tau_{had}$
- events categorised in jet-multiplicity and p_T(ττ),
 VBF-like and ggF-like categories
- ► Fit of multivariate discriminant (MVA) distribution
- main challenges of the $\tau\tau$ channel
 - invariant mass reconstruction & resolution
 - ▶ background control: $Z(\rightarrow \tau\tau)$ & fake- τ_{had} estimate

Signal Strength µ	$\mu = 1.43^{~+0.27}_{~-0.26} ({ m stat.}) ^{~+0.27}_{~-0.26} ({ m stat.})$	$0.32_{0.25}({ m syst.}) \pm 0.09({ m theory \ syst.})$
Significance σ	$\sigma_{\rm observed} = 4.5$	$\sigma_{\text{expected}} = 3.4$

H→ττ - production modes

Main H→ττ search interpreted in [ggF] vs [VH+VBF] production modes couplings

VBF-enriched region:

▶ 2 high p_T jets with large pseudo-rapidity separation

ggF-enriched (boosted) region:

p_T(ττ) ~ p_T(H) > 100 GeV

Two dimensional fit of the Higgs signal strength separating the ggF from VH+VBF production modes

Prod. mode	Significance σ		
ggF	$\sigma_{\text{observed}} = 1.74$	$\sigma_{\text{expected}} = 0.95$	
VH+VBF	$\sigma_{\text{observed}} = 2.25$	$\sigma_{\text{expected}} = 1.72$	

$$\mu_{ggF}^{\tau\tau} = 2.0 \pm 0.8 \text{(stat.)} ^{+1.2}_{-0.8} \text{(syst.)} \pm 0.3 \text{(theory syst.)}$$

$$\mu_{\text{VBF}+VH}^{\tau\tau} = 1.24 \, ^{+0.49}_{-0.45}(\text{stat.}) \, ^{+0.31}_{-0.29}(\text{syst.}) \, \pm 0.08(\text{theory syst.})$$

H→ττ - CP invariance

► HVV couplings as a test of CP-violation / CP-invariance

HWW, HZZ decays and Hyy differential cross-section: no deviations from Run1 data

Direct test through VBF production $(H \rightarrow \tau \tau)$

- CP-odd observable: sensitive to interference between SM and CP-odd contributions
- ➤ Optimal observable: combine multi-dimensional information in a single variable from the VBF production LO matrix-element [independent from H decay mode]

most sensitive for smallest values

Results interpreted in the Effective Field Theory framework:

CP-violating effects from dim \leq 6 operators on HVV: \tilde{d} parameter

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \tilde{g}_{HAA}H\tilde{A}_{\mu\nu}A^{\mu\nu} + \tilde{g}_{HAZ}H\tilde{A}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HZZ}H\tilde{Z}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HWW}H\tilde{W}^{+}_{\mu\nu}W^{-\mu\nu}$$

Couplings parametrisation:

$$\begin{split} \tilde{g}_{HAA} &= \frac{g}{2m_W} (\tilde{d} \sin^2 \theta_W + \tilde{d}_B \cos^2 \theta_W) & \tilde{g}_{HAZ} &= \frac{g}{2m_W} \sin 2\theta_W (\tilde{d} - \tilde{d}_B) \\ \tilde{g}_{HZZ} &= \frac{g}{2m_W} (\tilde{d} \cos^2 \theta_W + \tilde{d}_B \sin^2 \theta_W) & \tilde{g}_{HWW} &= \frac{g}{m_W} \tilde{d} \,. \end{split} \qquad \qquad \tilde{g}_{HAA} &= \tilde{g}_{HZZ} &= \frac{1}{2} \tilde{g}_{HWW} &= \frac{g}{2m_W} \tilde{d} \,. \end{split}$$

H→ττ - CP invariance

No CP-violation ('background-only') minimum at 0

- [d̄ < -0.11] & [d̄ > 0.05] excluded at 68% CL
 [10x improvement over same limit from HWW, HZZ]
- same limit-setting with ΔΦ^{sign}(jj) shows worse results [azimuthal angle between VBF-tagging jets]

Channel	Fitted value of d		
aulep $ au$ lep	0.3 ± 0.5		
aulep $ au$ had	-0.3 ± 0.4		

Limits in the framework for coupling-

$$\sigma(i \to H \to f) = \frac{\sigma_i(\kappa_j) \cdot \Gamma_f(\kappa_j)}{\Gamma_H(\kappa_j)}$$

Η→ττ

0

H→bb

0.5

1

1.5

77

μνη+νΒF vs μggF+ttH

Limits in the coupling-strength measurement framework

Fermionic decays (together with ttH) offer a direct probe of k_F coupling (accessible only from loop contributions in bosonic channels)

Direct exploration of the Higgs Yukawa mechanism

μνη+νΒF vs μggF+ttH

Limits in the coupling-strength measurement framework

Fermionic decays (together with ttH) offer a direct probe of k_F coupling (accessible only from loop contributions in bosonic channels)

Direct exploration of the Higgs Yukawa mechanism

μνη+νΒF vs μggF+ttH

Limits in the coupling-strength measurement framework

Combined H→γγ

H→WW

H→bb

0.5

1.5

1

_2 ⊢ H→ZZ

Η→ττ

ATLAS and CMS

LHC Run 1

Fermionic decays (together with ttH) offer a direct probe of k_F coupling

(accessible only from loop contributions in bosonic channels)

Direct exploration of the Higgs Yukawa mechanism

Projections for future accelerators

NLO rates

$$R(E) = \sigma(E \text{ TeV})/\sigma(14 \text{ TeV})$$

	σ(14 TeV)	R(33)	R(40)	R(60)	R(80)	R(100)
ggH	50.4 pb	3.5	4.6	7.8	11.2	14.7
VBF	4.40 pb	3.8	5.2	9.3	13.6	18.6
WH	1.63 pb	2.9	3.6	5.7	7.7	9.7
ZH	0.90 pb	3.3	4.2	6.8	9.6	12.5
ttH	0.62 pb	7.3	11	24	41	61
нн	33.8 fb	6.1	8.8	18	29	42

Projections for future accelerators

Coupling √s (TeV)→		CepC 0.24	FCC-ee 0.24 +0.35	IL <i>C</i> 0.25+0.5	CLIC 0.38+1.4+3	FCC-hh 100
L(ID.)	3000(1 expt)	5000	13000	6000	4000	40000
Kw	2-5	1.2	0.19	0.4	0.9	
K _z	2-4	0.26	0.15	0.3	0.8	
K_0	3-5	1.5	0.8	1.0	1.2	
K _v	2-5	4.7	1.5	3.4	3.2	< 1
Κ _u	~8	8.6	6.2	9.2	5.6	~ 2
K _c		1.7	0.7	1.2	1.1	
K _T	2-5	1.4	0.5	0.9	1.5	
Κ _W Κ _Z Κ _β Κ _γ Κ _κ Κ _κ Κ _σ	4-7	1.3	0.4	0.7	0.9	
K _{Zv}	10-12	n.a.	n.a.	n.a.	n.a.	
Γ _h	n.a.	2.8	1%	1.8	3.4	
BRingie	<10	<0.28	<0.19%	<0.29	<1%	
K _t	7-10		13% ind. tt scan	6.3	<4	~1?
K _t K _{HH}	?	35% from	K_Z 20% from K_Z	27	11	5-10
		model-dep	model-dep			

Coupling to top-quarks

y_{top} from pp→tt H/pp→tt Z

To the extent that the qqbar \rightarrow tt Z/H contributions are subdominant:

- Identical production dynamics:
 - o correlated QCD corrections, correlated scale dependence
 - o correlated α_s systematics
- mz~m_H ⇒ almost identical kinematic boundaries:
 - o correlated PDF systematics
 - o correlated m_{top} systematics

For a given y_{top} , we expect $\sigma(ttH)/\sigma(ttZ)$ to be predicted with great precision

VH - EFT interpretation

The VHbb channel is able to constrain some **combination of parameters** related to the dim-6 operators used to build the **EFT Lagrangian** (see arxiv:1404.3667 Ellis, Sanz, You)

EFT samples already under study in **ATLAS**:

mg5_aMC Higgs Characterization Model

MonteCarlo generation at NLO(QCD)+PS

EFT Lagrangian with VH anomalous couplings (mass basis, unitary gauge)

B-tagging in ATLAS: Run-1 and Run-2

b-efficiency 70%	MV1c	MV2c20 (2015)	MV2c10
c-rejection	5	8	12
light-rejection	136	400	380