Recent Top Physics Results from CMS

Kevin Lannon for the CMS Collaboration

Why Top Quark Physics?

- Top quarks stand out!
 - Most massive particle in the SM
- Fingerprints all over SM

Look for signs of new physics connected with top quarks!

Top Quark Physics Analysis

Top Quark Physics Analysis

Precision studies:

- Inclusive and differential cross sections
- → W helicity
- spin correlations
- ➡ AFB/charge asymmetry

Top Quark Physics Analysis

Precision studies:

- Inclusive and differential cross sections
- → W helicity
- spin correlations
- ➡ AFB/charge asymmetry

Explicit Searches for New Physics:

- Vector-like partners
- SUSY stop squarks
- → X→ttbar

Top Quark Physics Analysis Respect

Precision studies:

- Inclusive and differential cross sections
- → W helicity
- spin correlations
- ➡ AFB/charge asymmetry

Explicit Searches for New Physics:

- Vector-like partners
- SUSY stop squarks
- \rightarrow X \rightarrow ttbar

K. Lannon

What your colleagues feel towards you when you do an analysis of this type.

Envy

Top Quark Physics Analysis Respect

Precision studies:

- Inclusive and differential cross sections
- → W helicity
- ➡ spin correlations
- ➡ AFB/charge asymmetry

In between: Associated production! Search for rare (in SM) processes to check for deviations.

Explicit Searches for New Physics:

- Vector-like partners
- SUSY stop squarks
- \rightarrow X \rightarrow ttbar

K. Lannon

What your colleagues feel towards you when you do an analysis of this type.

Top Quarks + What?

Top quarks + Higgs: Obviously! Source of mass and most massive particle. See <u>earlier talk</u>. Is a background for other signals here.

Top quarks + W boson: Not actually sensitive to t-W coupling at least in SM. But if you have top quarks + extra Ws, that could certainly be a sign of new physics (i.e. X->tW).

K. Lannon

Top quarks + Z boson: Also very interesting! Hard to probe t-Z coupling directly any other way.

And More!

Top quarks + photons, bottom quarks, gluons/light quarks, top quarks (!): The list goes on and on.

Top Quarks + What?

Top quarks + Higgs: Obviously! Source of mass and most massive particle. See <u>earlier talk</u>. Is a background for other signals here.

Top quarks + W boson: Not actually sensitive to t-W coupling at least in SM. But if you have top quarks + extra Ws, that could certainly be a sign of new physics (i.e. X→tW).

K. Lannon

Top quarks + Z boson: Also very interesting! Hard to probe t-Z coupling directly any other way.

And More!

Top quarks + photons, bottom quarks, gluons/light quarks, top quarks (!): The list goes on and on.

Experimental Signature

Focus on multilepton signature: at least one lepton from top quark and one from W or Z.

Bottom quark jet

Light quark

- Anti- $k_T R = 0.4$
- $p_T > 30 \text{ GeV}, |\eta| < 2.4$
- Multivariate b-tagging

Electron or Muon

- $p_T > 30$ GeV, $|\eta| < 2.5$ (ele),
- Higher p_T cuts on some depending on final state
- Isolated

Neutrino

Multilepton Event Categories

Lepton Requirements

 $p_T > 25 \text{ GeV}$ $p_T > 40 \text{ GeV}$ for leading electron Require same-sign (SS)

Target

 $t\bar{t}W$

p⊤ > 40, 20, 10 GeV M(ℓℓ)-M(Ζ) < 10 GeV	p⊤ > 40, 10, 10, 10 GeV M(ℓℓ)-M(Z) < 20 GeV Veto if 2 nd Z found
$t\bar{t}Z$	$t\bar{t}Z$

Backgrounds

- Nonprompt leptons from B decays, conversions, etc.
- Estimated using data via a fake rate method
- Background model obtained from leptons in isolation sideband

K. Lannon

Diboson

- Prediction taken from MC
- Main contribution: WZ+jets, validated in control region

t(t)+X

- Challenging irreducible background, but generally small contribution
- Estimated by MC

variables to enhance signal sensitivity. Also divide by charge to take advantage of W charge asymmetry.

Fitting Signal Regions

2lSS

- Fit regions for ttW and ttZ individually and also simultaneously.
- When fit individually, treat other process as background

Results

K. Lannon

 $\sigma(pp \to t\bar{t}W) = 0.77^{+0.12}_{-0.11} (\text{stat})^{+0.13}_{-0.12} (\text{syst}) \text{ pb}$ $\sigma(pp \to t\bar{t}W^+) = 0.58 \pm 0.09(\text{stat})^{+0.09}_{-0.08}(\text{syst}) \text{ pb}$ $\sigma(pp \rightarrow t\bar{t}W^-) = 0.19 \pm 0.07(\text{stat}) \pm 0.06(\text{syst}) \text{ pb}$

 $\sigma(pp \to t\bar{t}Z) = 0.99^{+0.09}_{-0.08}(\text{stat})^{+0.12}_{-0.10}(\text{syst}) \text{ pb}$

.02547 arXiv:1711

EFI Introduction

- SM
- What about interpreting in terms of new physics?
- One option: Effective Field Theory
 - physics associated with particles too heavy to produce at LHC

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SN}}^{(4)}$$

K. Lannon

2 Dim-5 operato violates lepton number conservation

12

Cross section measurements are great way to assess compatibility with

Extend SM by adding higher dimensional operators representing new

https://arxiv.org/abs/1008.4884

$$c_{i}\mathcal{O}_{i}^{(5)} + \frac{1}{\Lambda^{2}}\sum_{j}c_{j}\mathcal{O}_{j}^{(6)} + \cdots$$
s
59 Dim-6 operators consistent with a symmetries and conservation laws

EFT for ttW/Z

- Focus on 39 operators that include at least one gauge or Higgs field
- Discard 15 operators that don't affect rates of ttW, ttZ, or ttH
 - Can't ignore ttH because similar event signature and many operators affect both ttH and ttZ
- Exclude from consideration 16 operators that affect other processes than ttW, ttZ, or ttH too much (e.g. would be constrained better in other measurements)
- 8 operators remaining that affect ttW, ttZ, or ttH but not significantly impacting other processes

K. Lannon

Characterize how each operator impacts ttW, ttZ, and/or ttH rates.

Use observed rates to constrain Wilson coefficient values

NOTRE DAME

EFT Analysis Interpretation

Example of one operator that affects all three processes

• At 95% CL, all operators consistent with SM ($c_i = 0$).

Wilson coefficient	Best fit $[\text{TeV}^{-2}]$	68%
$\bar{c}_{\rm uW}/\Lambda^2$	1.7	[-2
$ \bar{c}_{\rm H}/\Lambda^2 - 16.8 { m TeV}^{-2} $	15.6	[0,2
$\left \widetilde{c}_{3\mathrm{G}}/\Lambda^2\right $	0.5	[0,0
\bar{c}_{3G}/Λ^2	-0.4	$\left[-0\right]$
$\bar{c}_{\rm uG}/\Lambda^2$	0.2	[0,0
$ \bar{c}_{uB}/\Lambda^2 $	1.6	[0,2
$\bar{c}_{\rm Hu}/\Lambda^2$	-9.3	[-1
$\bar{c}_{2\rm G}/\Lambda^2$	0.4	$\left[-0\right]$

EFT Results

$$0 \text{ CL } [\text{TeV}^{-2}]$$
95% CL $[\text{TeV}^{-2}]$ $.4, -0.5] \text{ and } [0.4, 2.4]$ $[-2.9, 2.9]$ $(3.0]$ $[0, 28.5]$ $0.7]$ $[0, 0.9]$ $(.6, 0.1] \text{ and } [0.4, 0.7]$ $[-0.7, 1.0]$ $(.3]$ $[-1.0, -0.9] \text{ and } [-0.3, 0.4]$ $(.2]$ $[0, 2.7]$ $(0.3, -8.0] \text{ and } [0, 2.1]$ $[-11.1, -6.5] \text{ and } [-1.6, 3.0]$ $(.9, -0.3] \text{ and } [-0.1, 0.6]$ $[-1.1, 0.8]$

Single tZq

- Event signature: 3 leptons, 2 jets (1 b-jet) ightarrow
 - 2 b-jet provides ttZ control region
 - 0 b-jet provides WZ control region

K. Lannon

- BDT with Matrix Element variables provides additional discrimination against backgrounds
- Provides another probe of t-Z coupling

Significance: • Expected: 3.1

• Observed: 3.7

SM Prediction: $\sigma = 94.2 \pm 3.1 \text{ fb}$

- Experimental signature: $\geq 2\ell$ (SS for 2ℓ), ≥ 4 jets (≥ 2 b-jets)
- and b-jets plus two control regions (CR)

N_ℓ	$N_{\rm b}$	Njets	Region
2 2 3		≤ 5	CRW
	2	6	SR1
	7	SR2	
	≥ 8	SR3	
	5,6	SR4	
	≥ 7	SR5	
	≥ 4	≥ 5	SR6
≥3 –	2	≥ 5	SR7
	≥ 3	≥ 4	SR8
Inverted Z veto		CRZ	

K. Lannon

Four Top Production

Break into different signal regions (SR) based on number of leptons, jets,

Measured: $\sigma = 16.9^{+13.8}_{-11.4}$ fb Predicted: $\sigma = 9.2^{+2.9}_{-2.4}$ fb $|y_t/y_t^{\rm SM}| < 2.1$

Summary

- Top quark associated production provides an interesting laboratory to investigate the top sector for signs of new physics
 - ttW, ttZ, and tt γ (not shown) signals wells established
 - Evidence for ttH, tZq
 - Even very rare signals like tttt starting to yield results!
- Multilepton signature is useful for probing many of these processes.
- Increasing LHC integrated luminosity will allow exploration of differential distributions
- EFT provides interesting framework for characterizing possible new physics contributions to top quark associated production
- Only a small fraction of CMS Top results included. Visit the Top group results page for more results.

