# Recent results on SM physics with Vector Bosons in CMS

#### Gian Luca Pinna Angioni INFN and Univesità degli studi di Torino







Lake Louise 2018

## **Physic Motivation**

- Test of the perturbative calculations.
  - QCD corrections and hadronization models.
- Test of electroweak sector of SM.
- Sensitive to the interaction between gauge bosons via triple/quartic gauge couplings (TGC,QGC).
- Sensitive to anomalous triple/quartic couplings (aTGC,aQGC)
- Important test of the electroweak symmetry breaking
  - E.g. Higgs boson and unitarity of the VV scattering amplitude at all energies.

#### CMS standard model results overview

#### Multi Boson



#### **Electro Weak**



CMS Preliminary

#### Selection of analysis

- Measurement of differential cross sections in the  $\varphi$ \* variable for inclusive Z boson production in pp collisions at  $\sqrt{s}$  = 8 TeV
  - https://arxiv.org/abs/1607.06943
- Electroweak production of two jets in association with a Z boson in proton-proton collisions at  $\sqrt{s} = 13$  TeV
  - https://arxiv.org/abs/1712.09814
- Measurements of differential cross sections of the production of two Z bosons in association with jets at Vs 13 TeV
  - http://cds.cern.ch/record/2264556?ln=en
- Search for the electroweak production of two Z bosons produced in association with jets at  $\sqrt{s} = 13$  TeV
  - https://arxiv.org/abs/1708.02812

#### Selection of analysis

• Measurement of differential cross sections in the  $\varphi$ \* variable for inclusive Z boson production in pp collisions at  $\sqrt{s}$  = 8 TeV

https://arxiv.org/abs/1607.06943

Electroweak production of two jets in association with a Z boson in proton-proton collisions at Vs = 13 TeV

• https://arxiv.org/abs/1712.09814

Measurements of differential cross sections of the production of two Z bosons in association with jets at Vs 13 TeV

http://cds.cern.ch/record/2264556?ln=en

Search for the electroweak production of two Z bosons produced in association with jets at Vs = 13 TeV

https://arxiv.org/abs/1708.02812

# Z and $\phi^*$ variable (Z $\rightarrow$ 2 $\ell$ )

- Transverse momentum of Z (q<sub>T</sub>) is essential for high-precision measurements at the LHC (W boson mass).
- Low experimental resolution of q<sub>T</sub>
  - Uncertainties in the magnitude of the transverse momenta of the leptons from the decay of the Z boson.
- Angles are measured more precisely.

$$\phi * = \tan(\frac{\pi - \Delta \phi}{2}) \sin(\theta_{\eta}^{*})$$

 $\phi * \sim q_T / m_{\ell\ell}$ 

 Δφ = opening angle of leptons in the transverse plane.

• 
$$\cos(\theta_{\eta}^*) = \tanh[\Delta \eta/2]$$

#### **Z** Selection



- The distributions of the observables need to be corrected back to the stable particle level for efficiencies and for detector resolution effects. (Unfolding)
- The model for the detector resolution is derived from MADGRAPH (LO) generator interfaced with PYTHIA6.

# Z production cross sections

- Normalized and absolute differential cross section presented.
- Different bin of rapidity (y).
- Compared with five theoretical predictions.
- None of the predictions matches perfectly for the entire range.





### **Selection of analysis**

Measurement of differential cross sections in the  $\varphi$ \* variable for inclusive Z boson production in pp collisions at  $\sqrt{s}$  = 8 TeV

• https://arxiv.org/abs/1607.06943

# Electroweak production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV

• https://arxiv.org/abs/1712.09814

- Measurements of differential cross sections of the production of two Z bosons in association with jets at Vs 13 TeV
  - http://cds.cern.ch/record/2264556?ln=en
- Search for the electroweak production of two Z bosons produced in association with jets at Vs = 13 TeV

https://arxiv.org/abs/1708.02812

## Z+qq Electro-Weak





Small interference between signal and the main background. <0.4% in high signal purity phase space.

#### **Final state** Zqq→2*l*+2 jets (*l*=µ,e)

 $vs = 13 \text{ TeV} \text{ L} = 35.9 \text{ fb}^{-1}$ 



Lake Louise 2018

# Z+qq EW topology

Signal vs. Background discrimination made with a multi variate analysis. Boosted Decision Tree (BDT)

**7** Inputs:

- m<sub>ii</sub>
- Δη<sub>ii</sub>
- Quark gluon likelihood discriminant (1<sup>st</sup> jet and 2<sup>nd</sup> jet)
- р<sub>т</sub>іі

•  $z^* = \left(y_Z - \frac{1}{2}(y_{j1} + y_{j2})\right) / \Delta y_{jj}$  (Zeppenfeld variable)

$$R(p_T^{\text{hard}}) = \frac{|\vec{p_{Tj1}} + \vec{p_{Tj2}} + \vec{p_{TZ}}|}{|\vec{p_{Tj1}}| + |\vec{p_{Tj2}}| + |\vec{p_{TZ}}|} = \frac{|\vec{p_T^{\text{hard}}}|}{|\vec{p_{Tj1}}| + |\vec{p_{Tj2}}| + |\vec{p_{TZ}}|}$$

(event balance variable)



# Z+qq EW results

- Good agreement observed in all distributions.
- A binned maximum likelihood is used to fit simultaneously the strength modifiers for the EW Zjj and DY Zjj
  - strength modifiers ( $\mu = \sigma / \sigma_{SM}$ )
- Main systematics: Jet energy scale and the limited statistics of simulated events



 $\sigma(\text{EW} \ \ell \ell \text{jj}) = 552 \pm 19 \,(\text{stat}) \pm 55 \,(\text{syst}) \,\text{fb} = 552 \pm 58 \,(\text{total}) \,\text{fb}$ 

 $\sigma_{LO}(EW\ell\ell jj) = 543 \pm 24fb$ 

Lake Louise 2018

### **Selection of analysis**

• Measurement of differential cross sections in the  $\phi$ \* variable for inclusive Z boson production in pp collisions at  $\sqrt{s} = 8$  TeV

https://arxiv.org/abs/1607.06943

Electroweak production of two jets in association with a Z boson in proton-proton collisions at Vs = 13 TeV

• https://arxiv.org/abs/1712.09814

#### Measurements of differential cross sections of the production of two Z bosons in association with jets at Vs 13 TeV

http://cds.cern.ch/record/2264556?ln=en

Search for the electroweak production of two Z bosons produced in association with jets at  $\sqrt{s} = 13$  TeV

https://arxiv.org/abs/1708.02812

ZZ+jets





 Differential cross section: #Jets, #Jets (η<2.4), p<sub>T</sub> and η of leading jet, p<sub>T</sub> and η of sub-leading jet, m<sub>JJ</sub>, Δη<sub>JJ</sub>.

Signal qq->ZZ +jets, gg->ZZ(box) +jets , VBS Main Background DY+jets Not well represented by MC samples. → data driven method.





 $vs = 13 \text{ TeV} \text{ L} = 35.9 \text{ fb}^{-1}$ 

Lake Louise 2018

# derived from **MadGraphAMC@NLO + MCFM** generators interfaced with PYTHIA8. section presented. Overall good agreement

## $p_{\tau}^{jet}$ > 30 GeV

60 < *m*<sub>7</sub> <120 GeV.

p⊤<sup>ℓ</sup>>5 GeV

 $|\eta^{\ell_1}| \le 2.4$ 

#### The distributions is unfolded.

ZZ+jets cross sections

The model for the detector resolution is

Normalized and absolute differential cross



- Jet energy scale
- Unfolding



dσ<sub>fid</sub> [fb] dN<sub>jets</sub>

CMS

Preliminary

35.9 fb<sup>-1</sup> (13 TeV)

dGraph5\_aMCatNLO+MCEM+Pvhtia

folded data + stat. uncertai

hea+MCFM+Pvhtia

otal uncertaint

#### ZZ+jets cross sections



Lake Louise

### **Selection of analysis**

• Measurement of differential cross sections in the  $\phi$ \* variable for inclusive Z boson production in pp collisions at  $\sqrt{s} = 8$  TeV

https://arxiv.org/abs/1607.06943

Electroweak production of two jets in association with a Z boson in proton-proton collisions at Vs = 13 TeV

• https://arxiv.org/abs/1712.09814

Measurements of differential cross sections of the production of two Z bosons in association with jets at Vs 13 TeV

http://cds.cern.ch/record/2264556?ln=en

# Search for the electroweak production of two Z bosons produced in association with jets at $\sqrt{s} = 13$ TeV

https://arxiv.org/abs/1708.02812

ZZ+jets EWK



 Base selection identical to ZZ +jets

+ mJJ > 100 GeV

- Multi variate analysis (BDT) using  $m_{JJ}$ ,  $\Delta \eta_{JJ}$ ,  $m_{4\ell}$ ,  $p_{T,4\ell}$ ,  $z^*_{Z1}$ ,  $z^*_{Z2}$  (Zeppenfeld)  $R(p_T^{hard})$ ,  $R(p_T^{rel,jets})$
- Cross-check with a Matrix Element Discriminator (MELA)



### ZZ+jets EWK Multi variate analysis

- The full BDT spectrum from the events in the ZZjj selection is used to extract the significance of the EW signal via a maximum-likelihood template fit.
- background-only hypothesis is excluded with a significance of 2.7 standard deviations (1.6 standard deviations expected).

$$\mu = 1.39^{+0.72}_{-0.57} (\text{stat.})^{+0.46}_{-0.31} (\text{syst.}) = 1.39^{+0.86}_{-0.65}$$

Cross section measured in same fiducial phase space used in ZZ+jets + M<sub>jj</sub>>100 GeV



 $\sigma_{\rm fid.}(\text{EW pp} \to ZZjj \to \ell\ell\ell'\ell'jj) = 0.40^{+0.21}_{-0.16}(\text{stat.})^{+0.13}_{-0.09}(\text{syst.}) \text{ fb} \quad \sigma_{theo} = 0.29^{+0.02}_{-0.03} \text{ fb}$ 

#### **Anomalous Couplings**

Almost all analyses include measurement of anomalous vector boson couplings. 2 summary plot as example:



### Summary

#### CMS is pursuing a very active scalar program of measurement:

- Many different channels studied with access to unfolded differential measurements and limits on anomalous gauge couplings.
- VBS observed in same sign WW and search is on-going in other channels such ZZ, Wy, Zy and WZ.
- Precise measurement on weak mixing angle.
- Expect many new interesting results from Run 2 data.

# **Back Slide**



#### Unitarity violation

The Vector Boson scattering is deeply connected the nature of EWSB.

- The Goldstone bosons of the Higgs field become longitudinal, massive modes of the weak gauge bosons.
- If the Higgs boson is only partially responsible for EWSB than V<sub>L</sub>V<sub>L</sub> cross section will keep growing with center of mass energy up to a new physic scale Λ



## **Unfolding Procedure – Ingredients**





#### Z Cross sections



Lake Louise 2018

#### **BDT Variables**

An event balance variable:

$$R(p_T^{\text{hard}}) = \frac{|\vec{p_{Tj1}} + \vec{p_{Tj2}} + \vec{p_{TZ}}|}{|\vec{p_{Tj1}}| + |\vec{p_{Tj2}}| + |\vec{p_{TZ}}|} = \frac{|\vec{p_T}|}{|\vec{p_{Tj1}}| + |\vec{p_{Tj2}}| + |\vec{p_{TZ}}|}$$

Zeppenfeld variable:

$$z^* = \left(y_Z - \frac{1}{2}(y_{j1} + y_{j2})\right) / \Delta y_{jj}$$

 $\rightarrow$ 

# Quark gluon likelihood

- In case of pure EWK production only jets initiated by final states with quarks are possible
- In case of DY background about half of all jets produced are originated from gluons
- Differences in internal q/g jet composition are structure are exploited in QGL to enhance separation of signal events
- QGL input variables:
  - The jet constituents minor RMS in the  $\eta\phi$  plane.
  - The jet particle multiplicity.
  - The jet internal  $p_T$  distribution

### Z+qq EW anomalous gauge couplings

- Tested 6 dimensional operators
- ATGC signal events are simulated at LO using MADGRAPH5 aMC@NLO
- No significant deviation from the SM expectation is observed.
- Additional hadron activity is also studied and generally good agreement is found between data predictions (PYTHIA or HERWIG++)

$$egin{aligned} \mathcal{O}_{WWW} &= rac{c_{WWW}}{\Lambda^2} W_{\mu
u} W^{
u
ho} W^{\mu}_{
ho}, \ \mathcal{O}_W &= rac{c_W}{\Lambda^2} (D^\mu \Phi)^\dagger W_{\mu
u} (D^
u \Phi), \ \mathcal{O}_B &= rac{c_B}{\Lambda^2} (D^\mu \Phi)^\dagger B_{\mu
u} (D^
u \Phi), \ \widetilde{\mathcal{O}}_{WWW} &= rac{\widetilde{c}_{WWW}}{\Lambda^2} \widetilde{W}_{\mu
u} W^{
u
ho} W^{
u}_{
ho}^{\ \mu}, \ \widetilde{\mathcal{O}}_W &= rac{\widetilde{c}_W}{\Lambda^2} (D^\mu \Phi)^\dagger \widetilde{W}_{\mu
u} (D^
u \Phi), \end{aligned}$$



#### **Event Selection**

#### **Both leptons**

• PF isolation in cone  $\Delta R = 0.3$ 

*R*<sub>iso</sub>< 0.35

• SIP=  $|IP/\sigma_{IP}| < 4$ 

#### **Electrons**

- BDT multivariate technique
- |η<sup>e</sup>| < 2.5</p>
- $p_T^e > 7 \text{ GeV}$
- Effective area PU correction

#### Muons

4μ 4e 2e2μ Final state

- BDT multivariate technique
- $|\eta^{\mu}| < 2.4$
- $p_T^{\mu} > 5 \, \text{GeV}$
- $\Delta\beta$  PU correction

#### Jets

PF jet AK4

|η<sup>jet</sup>|< 4.7</li>

•  $p_T^{jet} > 30 \text{ GeV}$ 

#### Loose jet ID

• 60 < m<sub>21</sub> < 120 GeV

*M<sub>llcrossed</sub>* (OSSF) < 4 GeV</li>

•  $60 < m_{Z2} < 120$  GeV (If #  $Z_2 > 1$  the pair of leptons with At least two leptons with  $p_T > 10$  GeV and one with  $p_T$  highest scalar sum of  $p_T$  is chosen) > 20 GeV

#### Background

**Irreducible background**: processes which contain **4 prompt leptons** from non-signal

processes (ttZ, WWZ), very small.

Estimated from MC samples.

Reducible background: processes which contain one or more non-prompt leptons in the four-lepton final state (DY, tt, WZ, WWW)

- not well represented by MC samples.
- low statistics.
  - Estimated using a **data driven method** used from the  $H \rightarrow ZZ \rightarrow 4I$

Analysis based on the **lepton-to-jet fake rate** 

### **Control regions**

• We need 3 different control regions to measure the reducible background with data

- ZL (Z(II)+lioose) to measure the lepton fake rate fi
- 2P2F and 3P1F
  - P = lepton passing the final selection criteria (Z1)
  - F = lepton not passing the final ID and ISO criteria



#### Fake rate

Select a sample of Z(II)+I<sub>loose</sub> defined as follow:

- Z made of 2 tight leptons (as for signal)
- ▶ | mll mZ| < 10 GeV.
- Iloose passing the loose selection criteria. (loose selection criteria details in back slide)
- The invariant mass of loose and the Z lepton with the opposite sign must be greater than 4 GeV.
- ► E<sup>miss</sup>< 25 GeV.
- $\blacktriangleright$  M<sup>TW</sup> < 30 GeV (3rd leptons and MET).

Fake rate binned as function of eta and pT



# **Reducible background**



Bad agreement with MC as expected.

DY has very low statistic. Only 3 events. One is negative because of matching technic

#### Data MC comparison





#### Leading jets





![](_page_36_Figure_3.jpeg)

![](_page_36_Figure_4.jpeg)

## **Differential cross-section**

- Variables: #Jets, #Jets (η<2.4),  $p_T$  and η of leading jet,  $p_T$  and η of sub-leading jet,  $m_{JJ}$ ,  $\Delta \eta_{JJ}$ .
- Unfoding with D'Agostini and 4 iteration.
  - ZZ Inclusive
  - 8 TeV analysis
- 2 sets of samples:
- MadGraph + MCFM + Phantom (nominal set)
- Powheg + MCFM + Phantom (Comparison and systematics)
- Differential cross-section obtained in two configuration:
  - Absolute: Used to extract Cross section per jet multiplicity.
  - Normalized to 1: Compare shape and reduce systematic uncertainties.
  - Jet multiplicity plots presented in both configuration.

Fidcucial phase space

 $p_T^e > 5 \text{ GeV}, |\eta^e| < 2.5$  $p_T^{\mu} > 5 \text{ GeV}, |\eta^{\mu}| < 2.5$  $p_T^{\ell_{3,4}} > 5 \text{ GeV}$  $p_T^{\hat{\ell}_1} > 20 \text{ GeV}$ ,  $p_T^{\ell_2} > 10 \text{ GeV}$  $m_{\ell^+\ell^-} > 4 \text{ GeV} \text{ (any OSSF pair)}$  $60 < m_{Z_1}, m_{Z_2} < 120 \text{ GeV}$ 

#### Systematic uncertainty 1/3

- Trigger: Difference between trigger efficiencies in data and in simulated events. Trigger efficiencies are found with a tag-and-probe technique.
- ID, Isolation, SIP: Distributions recomputed with the scaling factors varied up and down by the tag-and-probe uncertainties.
- Reducible background: Control regions statistics, difference composition of ZL and others CR. 30 % on fake rate.
- Irreducible background: MC statistic.
- Pile-Up: ± 4.6% variation of the minimum bias cross section for the pile-up reweighting in the MC.
- **PDF**  $\alpha_s$ : Estimated using the last NNPDF3.0 recipe.
- MC Choice: Compare data unfolded with response matrices obtained from Madgraph5\_aMC@NLO and POWHEG samples

#### Systematic uncertainty 2/3

Jet energy scale: Variation of p<sub>T</sub> of the jets in MC w.r.t. their uncertainties

Jet energy resolution: Variation of p<sub>T</sub> of the jets in MC w.r.t. their uncertainties

## Development and optimization of the BDT

#### Choice of input variables:

- Explored a total of 36 observables
- Prune variables that provide a small gain or are expected to be poorly-modelled in MC
- $m_{JJ}$ ,  $\Delta \eta_{JJ}$ ,  $m_{4\ell}$ ,  $p_{T,4\ell}$ ,  $\eta^*_{Z1}$ ,  $\eta^*_{Z2}$ ,  $p_T$  <sup>rel,hard</sup>,  $p_T$  <sup>rel,jets</sup>
- Hyper-parameters optimized using grid search
- Cross-check of BDT performance with a Matrix Element Discriminator (MELA)

#### Template analysis

- VBS Selection efficiency: 65% signal vs 30% background.
- BDT working point with 65% signal efficiency has 19% QCD background efficiency.

![](_page_40_Figure_10.jpeg)

#### ZZ+jets EWK anomalous quartic gauge couplings

ZZjj sensitive to neutral T8 and T9 and T0, T1,T2 operators:

$$\mathcal{L}_{T,8} = \frac{f_{T8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}, \ \mathcal{L}_{T,9} = \frac{f_{T9}}{\Lambda^4} B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{L}_{T,0} = \frac{f_{T0}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times \operatorname{Tr}[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta}], \ \mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta}] \times \operatorname{Tr}[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu}]$$
$$\mathcal{L}_{T,2} = \frac{f_{T2}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta}] \times \operatorname{Tr}[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha}]$$

![](_page_41_Figure_3.jpeg)

#### ID 95% confidence limits are derived for each operator coupling, setting the other to zero

| Coupling            | Exp. lower | Exp. upper | Obs. lower | Obs. upper | Unitarity bound |
|---------------------|------------|------------|------------|------------|-----------------|
| $f_{T_0}/\Lambda^4$ | -0.53      | 0.51       | -0.46      | 0.44       | 0.6             |
| $f_{T_1}/\Lambda^4$ | -0.72      | 0.71       | -0.61      | 0.61       | 0.6             |
| $f_{T_2}/\Lambda^4$ | -1.4       | 1.4        | -1.2       | 1.2        | 0.6             |
| $f_{T_8}/\Lambda^4$ | -0.99      | 0.99       | -0.84      | 0.84       | 2.8             |
| $f_{T_9}/\Lambda^4$ | -2.1       | 2.1        | -1.8       | 1.8        | 2.9             |

## **Anomalous Couplings**

#### WWZ aTGC

#### WWy aTGC

![](_page_42_Figure_3.jpeg)