Lepton-flavour universality tests with semitauonic b-hadron decays at LHCb

Victor Renaudin

on behalf of the LHCb collaboration

LAL, Université Paris-Sud

Lake Louise Winter Institute - February 23, 2018

LFU: a hot topic

• The Standard Model predicts *Lepton Flavour Universality (LFU)*: equal couplings between gauge bosons and the three lepton families

 $\mathcal{R}(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu)}{\mathcal{B}(H_b \to H_c \mu \nu)} \text{ should only account for phase space effects}$

- Yet, tensions between SM expectations and experimental results are found in:
 - \Box semitauonic B decays \rightarrow this talk
 - \Box b \rightarrow sll transitions \rightarrow Violaine's presentation
- $\circ~$ Several models (charged Higgs, leptoquarks, W') add new interactions with a stronger coupling with the τ
- Some models (leptoquarks & W'/Z' models) try to explain both discrepancies.

arXiv:1604.03088, arXiv:1206.4977

Why using semitauonic B decays ?

As tree level decays, they combine some nice features:

- Precise prediction from SM using ratios with shared systematics cancelling
- **Abundant channel:** BR($B \rightarrow D^* \tau v$) ~ 1.2% (in SM)
- Sensitivity to NP contributions

Different hadron species:

- $\circ \quad D^*, D^0, D^+, D_s, \Lambda_c^{(*)}, J/\Psi$
- Not only spectator quarks differ but also the **spin**:
 - $\Box \quad 0: D^0, D^+, D_s$
 - $\Box \quad 1: D^*, J/\Psi$
 - $\Box \quad \frac{1}{2}: \Lambda_{c}^{(*)} \qquad \text{Only at LHCb}$

Two reconstruction channels for τ at LHCb:

 $\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$

$\tau \rightarrow \mu v v$

longitudinal component of B momentum missing:

• Assuming $\beta \gamma_{z,tot} = \beta \gamma_{z,visible}$ • Can then calculate rest frame quantities: $m_{missing}^2, E_{\mu}, q^2$

 $\tau \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu \rightarrow$ later in the talk

Phys. Rev. Lett. 115, 111803

 3D MC-template based binned fit to m²_{missing} vs E_u in coarse q² bins

- Fit to isolated data, used to determine ratio of $B \rightarrow D^* \tau v$ and $B \rightarrow D^* \mu v$
- Templates are a good description of the data

R(D^{*}) with т→µvv

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030 \rightarrow \text{consistent with SM at } 2.1\sigma \text{ level}$

arXiv:1711.05623

R(J/ψ)

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_\mu)}$$

LFU probed with a new hadronisation:

- \circ SM expectation: 0.25 0.28
- Lower statistics due to B_c⁺ production fraction

Same strategy as R(D*) analysis:

• Use of m_{miss}^2 , q^2 , E_{μ} . $\Box q^2$ and E_{μ} combined into Z B_c^+ specificities:

- $\circ \quad \mathbf{B_c}^+ \text{ decay-time shorter than other} \\ \mathbf{B} \to \text{ helps reducing background}$
- $\circ \quad B_c^{\ +} \rightarrow J/\psi \text{ form-factors unknown}$
 - estimated from fit to enriched sample of the normalisation mode.

R(J/ψ)

- \circ 3D template fit using $\tau(B_c^+)$, m_{miss}^2 , Z
- Largest systematics
 - $\Box \quad B_{c}^{+} \rightarrow J/\psi \text{ form-factor}$
 - □ simulation sample size
- First evidence of $B_c^+ \rightarrow J/\psi \tau v$

R(D*) with τ→π⁻π⁺π⁻(π⁰)∨

- Semileptonic decay without charged lepton in the final state $\Box \rightarrow Zero$ background from normal semileptonic decays !
- No signal mass peak due to neutrinos
- **but several hadronic ones** ($D^0 \rightarrow K3\pi$, $D^+ \rightarrow K\pi\pi$, ...)
 - It provides control on the various background channels
- $\circ \quad \text{Only one } \nu \text{ at the } \tau \text{ vertex}$
 - Partial reconstruction can be applied with good precision
- $B^0 \rightarrow D^* \pi^+ \pi^- \pi^+$ is used as normalisation

$$R_{had}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \pi^+ \pi^- \pi^+)}$$

Same final state: shared systematics uncertainties cancel

External inputs

 $B^0 \approx D^*$

 $R(D^*) = R_{had} \times \left| \frac{\mathcal{B}(B^0 \to D^{*+} \pi^+ \pi^- \pi^+)}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} \right|$

7

arXiv:1708.08856, arXiv:1711.02505

Vertex topology

Most abundant background: hadronic B decays into $D^*3\pi X$:

yield is **100x bigger** than SM expectation for signal yield !

Good precision on τ decay vertex position

Detachment cut: τ vertex is downstream with respect to the B⁰ vertex with a significance of at least 4σ

 $D^{\ast}3\pi$ background reduced by 3 orders of magnitude

Double charm background

- The remaining background consists of B⁰ decays where the 3π vertex is transported away from the B⁰ vertex by a **charm carrier**: D_s, D⁺ or D⁰, e.g. B \rightarrow D^{*}DX, D \rightarrow 3 π X
- Total yield is ~10x higher than SM expectation for signal
- LHCb has three very good tools to limit this background:
 - \Box 3 π dynamics
 - Isolation criteria against charged tracks and neutral energy deposits
 - Partial reconstruction in both signal and background hypotheses
- A Boosted Decision Tree (BDT) is trained using these tools to discriminate double charm decays from signal

Signal extraction and fit

Signal reconstruction:

- Assume 2 neutrinos in the event
 → can be used to access full kinematics
 - $\Box \quad \text{Reconstruction of } \tau \text{ and } B^0$ momentum and τ decay time
 - Kinematics solution found
 ~95% of the time

Fit strategy:

- A high BDT cut is applied
- A 3D template fit is performed in
 - q² (squared-momentum transferred to the τ-ν system)
 - \circ τ lifetime
 - The output of the **BDT**

q² distribution

 The 3D template binned likelihood fit results are presented for the lifetime and q² in four BDT bins.

arXiv:1708.08856, arXiv:1711.02505

- The increase in signal purity as function of BDT is very clearly seen, as well as the decrease of the D_s component.
- The dominant background at high BDT becomes the D⁺ component, with its distinctive long lifetime.
- The overall χ^2 per dof is 1.15

arXiv:1708.08856, arXiv:1711.02505

Main systematics

Room for progress exists
on a longer timescale on
both internal and
external sources !

Contribution	Value %
Simulated sample size	4.7
Signal modeling	1.8
D [*] Tv and D _s ^{**} Tv feed-downs	2.7
Ds→3πX decay model	2.5
$B \rightarrow D^{*-}D_{s}^{+}X$, $B \rightarrow D^{*-}D^{+}X$, $B \rightarrow D^{*-}D^{0}X$ backgrounds	3.9
Combinatorial background	0.7
B→D [*] 3πX background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Normalisation channel efficiency	2.0
Total internal uncertainty	9.1
B(B ⁰ →D [*] 3π) and B(B ⁰ →D [*] μv _µ)	4.8

In red: can be reduced with help from other experiments (BELLE, BES, ...)

In green: can be reduced internally by LHCb

R(D*) results

• The fit results give a branching fraction which is: **BR(B**⁰ \rightarrow **D**^{*+} τ **v**) = (1.40 ± 0.09(stat) ± 0.13(syst) ± 0.18(ext)) % To be compared to PDG 2017: BR(B⁰ \rightarrow D^{*+} τ v) = (1.67 ± 0.13) %

• Using the HFLAV BR($B^0 \rightarrow D^* \mu v$) = (4.88 ± 0.1) %, we get:

 $R(D^*) = 0.286 \pm 0.019(stat) \pm 0.025(syst) \pm 0.021(ext)$

- Impact on World Average:
 - $\label{eq:relation} \square \quad R(D^*) {:} \ \textbf{3.3\sigma} \rightarrow \textbf{3.4\sigma} \ \text{from SM prediction}$
 - $\Box \quad \text{Adding } R(D): \textbf{4.0} \sigma \rightarrow \textbf{4.1} \sigma$
- It is also possible to compute an LHCb average of $R(D^*)$:
 - $\square R_{LHCB}(D^*) = 0.309 \pm 0.016(stat) \pm 0.024(syst)$

Conclusion

- Latests results of Run1 dataset:
 R(J/ψ) using muonic τ
 R(D^{*}) using hadronic τ
- both statistical and systematic uncertainties will be reduced using large statistics collected during Run2
- LFU can be tested using
 - □ Precise measurements of $R(D^{(*)})$
 - □ several hadrons $(J/\psi \text{ but also } D^{0,+}, D_s, \Lambda_c^{(*)}) \rightarrow$ probing different dynamics and spin structures

WA combination of R(D) and $R(D^*)$ is in tension with SM at the 4.1 σ^* level!

*: this is reduced with latest theory input

arXiv:1707.0950

Thank you for your attention

Any question ?

_0

The LHCb detector

- **Single arm spectrometer** at LHC in the pseudorapidity range $2 < \eta < 5$
- Optimized to study hadron decays containing **b** and **c** quarks:
 - CP violation, rare decays, heavy flavor production;
- **Excellent vertex resolution** and separation of B vertices
- Good momentum and mass resolution
- Excellent **PID** capabilities (good separation **K**-π and muon identification)

R(D^{*}) status before hadronic result

The world average of the combination of R(D) and $R(D^*)$ is in tension with the SM expectation at the 4σ level !

Double charm background

- To determine the D_s decay model:
 - The BDT output is used to select an enriched sample of D_s events directly from data
 - Several variables related to the 3π dynamics are simultaneously fitted

The weights obtained are used to construct the D_s templates

Normalisation channel

- The normalisation channel has to be as similar as possible to the signal channel to cancel all systematics linked to trigger, particle ID, selection cuts
- They differ by:
 - $\begin{tabular}{ll} $$ $$ ofter pions and D^* due to the presence of two v \\ $$ two v \\ \end{tabular}$
 - □ kinematics of the 3π system is not exactly the same:
 - This gives a small residual effect on the efficiency ratio.

Absolute BR recently measured by BABAR with a precision of 4.3%

Phys.Rev. D94 (2016) no.9, 091101

