

CP violation in beauty and charm at LHCb

Alison Tully, University of Cambridge, on behalf of the LHCb collaboration

Lake Louise Winter Institute, February 23, 2018

Why do we need CP violation?

- One of the necessary ingredients to create a baryon asymmetry is CP violation
- CPV is present in the Standard Model, but orders of magnitude too small
- In extensions of the SM, additional sources of CP violation can arise from the exchange of new particles
- There are two routes to these new physics models

Direct searches Limited by collision energy

CP violation in the Standard Model

• CP violation is described in the quark sector of the Standard Model by a complex phase in the CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• Unitarity imposes conditions that are represented geometrically as triangles

• Aim to experimentally **overconstrain** the Unitarity triangle to test that it closes

Types of CP violation

$$\begin{array}{c} |P_1\rangle = p \, |P^0\rangle + q \, |\overline{P}^0\rangle \\ |P_2\rangle = p \, |P^0\rangle - q \, |\overline{P}^0\rangle \end{array} \quad \begin{array}{c} A_f = \langle f \, | \, H \, |P\rangle \\ \overline{A_{\overline{f}}} = \langle f \, | \, H \, |\overline{P}\rangle \end{array} \end{array}$$

(A)
$$\left| \begin{array}{c} \underline{P} \\ \underline{-P} \\ \underline{-f} \end{array} \right|^2 \neq \left| \begin{array}{c} \underline{\overline{P}} \\ \underline{-f} \\ \underline{-f} \end{array} \right|^2$$

- CP violation in the decay (A)
 - $|A_f/\overline{A}_{\overline{f}}| \neq 1$
- CP violation in mixing (B)
 - Occurs in neutral mesons
 - $|q/p| \neq 1$
- CP violation in the interference between mixing and decay (C)
 - Neutral meson decaying into a non-flavour specific state
 - $\operatorname{Im}\left(\frac{q}{p}\frac{\overline{A_{f}}}{A_{f}}\right) \neq 1$
- Measure CP violating parameters $\overline{A}_{\epsilon} A_{\epsilon} \qquad C_{f} cos(\Delta mt) S_{f} sin(\Delta mt)$

•
$$\frac{\overline{A_f} - \overline{A_f}}{\overline{A_f} + A_f} = \frac{\overline{Cost}(\underline{\Delta\Gamma t}) - Cost}{\cosh(\underline{\Delta\Gamma t}) + D_f \sinh(\underline{\Delta\Gamma t})}$$

- S_f , D_f : CPV in the interference C_f : CPV in decay

CP violation in beauty

CKM angle γ

- $\gamma \equiv \arg \left(-\frac{V_{ud}V_{ab}^*}{V_{cd}V_{cb}^*}\right)$ is the least well known angle of the Unitarity triangle
- The only CP violating parameter that can be measured through tree decays
 - Important Standard Model benchmark
 - Compare tree and loop level determinations to test for **new physics** currently consistent but with large uncertainties
- Theoretically pristine $|\delta_\gamma \leq \mathcal{O}(10^{-7})|$
- Access through the interference of $b \rightarrow c$ and $b \rightarrow u$ decays
- World average of (73.4^{+4.3}_{-5.0})° [HFLAV] dominated by the combination of LHCb measurements (76.8^{+5.1}_{-5.7})° made with B⁺, B⁰ and B⁰_s [LHCb-CONF-2017-004]

Search for B_c^+ decays to two charm mesons [arXiv:1712.04702]

- CP violation has **not yet been observed** in B_c^+ decays
- $B_c^+ \rightarrow D_{(s)}^{(*)+} D^{(*)}$ decays, where D is D^0 or \overline{D}^0 , have been proposed to measure γ [Phys. Rev. D 62, 057503, Phys. Rev. D 65, 034016]
- Advantage over traditional $B \to DK$ since the triangle sides are of comparable length, interference $\sim 100\%$
- Disadvantage is small B_c^+ production cross section and branching fractions

V_{cb}, colour suppressed

Channel	Prediction for	the b	ranching	fraction $[10^{-6}]$
$B_c^+ \to D_s^+ \overline{D}{}^0$	2.3 ± 0.5	4.8	1.7	2.1
$B_c^+ \rightarrow D_s^+ D^0$	3.0 ± 0.5	6.6	2.5	7.4
$B_c^+ \to D^+ \overline{D}{}^0$	32 ± 7	53	32	33
$B_c^+ \rightarrow D^+ D^0$	0.10 ± 0.02	0.32	0.11	0.32

[Phys. Rev. D 86, 074019, arXiv:hep-ph/0211021, Phys.Lett.B555:189-196,2003, Phys. Rev. D 73, 054024]

Search for B_c^+ decays to two charm mesons [arXiv:1712.04702]

$$rac{f_c}{f_u} imes \mathcal{B}(B_c^+ o D_{(s)}^+ D) = \mathcal{B}(B^+ o D_{(s)}^+ \overline{D^0}) imes rac{\mathcal{N}(B_c^+)}{\mathcal{N}(B^+)} imes rac{arepsilon(B^+)}{arepsilon(B_c^+)} + rac{arepsilon(B^+)}{arepsilon(B_c^+)}$$

- Fitted yield using run I data (3 fb⁻¹)
- Relative efficiency

•
$$D^+_s
ightarrow K^+ K^- \pi^+$$
, $D^+
ightarrow K^- \pi^+ \pi^+$

• $D^0 \to K^- \pi^+, K^- \pi^+ \pi^- \pi^+$

• No evidence for signal found, upper limits at 90% (95%) confidence level:

$$\begin{split} & \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^+ \bar{D}^0)}{\mathcal{B}(B^+ \to D_s^+ \bar{D}^0)} = (3.0 \pm 3.7) \times 10^{-4} \ [< 0.9 \ (1.1) \times 10^{-3}], \\ & \frac{f_c}{\mathcal{B}(B_c^+ \to D_s^+ \bar{D}^0)}{\mathcal{B}(B^+ \to D_s^+ \bar{D}^0)} = (-3.8 \pm 2.6) \times 10^{-4} \ [< 3.7 \ (4.7) \times 10^{-4}], \\ & \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^+ \bar{D}^0)}{\mathcal{B}(B^+ \to D^+ \bar{D}^0)} = (8.0 \pm 7.5) \times 10^{-3} \ [< 1.9 \ (2.2) \times 10^{-2}], \\ & \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^+ \bar{D}^0)}{\mathcal{B}(B^+ \to D^+ \bar{D}^0)} = (2.9 \pm 5.3) \times 10^{-3} \ [< 1.2 \ (1.4) \times 10^{-2}]. \end{split}$$

Assuming an optimistic $f_c/f_u = 1.2\%$, $\mathcal{B}(B_c^+ \to D^+ \overline{D}^0) < 6.0(7.0) \times 10^{-4}$ Well above theoretical expectation

Limits also set on excited D modes

CP asymmetry in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays [arXiv:1712.07428]

- Sensitivity to γ and the B_s^0 mixing phase, $\gamma 2\beta_s$, arises in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ through the interference between mixing and decay
- Leading order diagrams are both $\mathcal{O}(\lambda^3)$, interference $\sim 35\%$
- $\gamma 2\beta_s$ can be determined up to a two-fold ambiguity
- Full run I (3 fb⁻¹) update of [JHEP 11 (2014) 060]

•
$$D_s^-
ightarrow K^+ K^- \pi^-$$
, $\pi^+ \pi^- \pi^-$, $K^- \pi^- \pi^+$

CP asymmetry in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays [arXiv:1712.07428]

• Two-stage analysis strategy:

- 1. Perform a multidimensional fit to $m(B_s^0)$, $m(D_s^+)$, and the PID distribution of the bachelor kaon to separate signal from background
- 2. Subtract background and perform a fit to the weighted decay-time distribution
- Validate with $B^0_s
 ightarrow D^-_s \pi^+$

CP asymmetry in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays [arXiv:1712.07428]

• Using $\phi_s = -2\beta_s$ as external input

- **3.8** σ evidence for CP violation in $B_s^0 \to D_s^{\mp} K^{\pm}$
- $\bullet\,$ Measurement of γ is 2.3 σ from the LHCb combination

CP violation in charm

Charm triangle

- Charm decays provide the only way to probe CP violation with up type quarks
- ullet CP asymmetries in charm decays are at most $\mathcal{O}(10^{-3})$ in the SM
- Short distance effects expected to be small from stretched charm triangle, but long distance effects may dominate

• No evidence for CP violation has yet been found in charm

$D^0 - \overline{D}{}^0$ mixing and CP violating parameters with $D^0 \rightarrow K^- \pi^+$ [arXiv:1712.03220]

- $D^0 \overline{D}{}^0$ oscillations are characterised by $x \equiv \Delta m / \Gamma$ and $y \equiv \Delta \Gamma / 2\Gamma$
- Use 'right sign' (RS) $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi_s^+$ and 'wrong sign' (WS) $D^{*+} \rightarrow D^0(\rightarrow K^+\pi^-)\pi_s^+$ from the suppressed D^0 decay and the favoured decay after oscillation
- Measure the time-dependent ratio of WS to RS decay rates

$$R(t) pprox R_D + \sqrt{R_D} y' rac{t}{ au} + rac{x'^2 + y'^2}{4} \left(rac{t}{ au}
ight)^2$$

- If R_D , the suppressed to favoured D^0 decay rate ratio, differs between D^0 and $\overline{D}^0 \rightarrow CPV$ in the **decay**
- If (x', y'), which are related to the mixing parameters, differ between D^0 and $\overline{D}^0 \rightarrow \text{CPV}$ in **mixing** or **interference**
- Fit data under three hypotheses: CPV allowed, no CPV in decay, no CPV
- 5 fb^{-1} update of run I (3 fb^{-1}) measurement [Phys. Rev. Lett. 111, 251801]

$D^0 - \overline{D}{}^0$ mixing and CP violating parameters with $D^0 \rightarrow K^- \pi^+$ [arXiv:1712.03220]

 Assuming CP symmetry, measure mixing parameters

$$egin{aligned} &x'^2 = (3.9 \pm 2.7) imes 10^{-5}, \ &y'^2 = (5.28 \pm 0.52) imes 10^{-3}, \ &R_D = (3.454 \pm 0.031) imes 10^{-5} \end{aligned}$$

- No evidence for CP violation $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-} = (-0.1 \pm 9.1) \times 10^{-3},$ $1.00 < |q/p| < 1.35 \ @ 68.3\% \ C.L.$
- Twice as precise as previous measurement

Conclusion

- **Precision flavour physics** is the way forward if no new particles are discovered in direct searches at the LHC
- Results so far are consistent with the Standard Model, however, many are statistically limited
- Many more exciting run II measurements coming soon
- The future looks bright for CP violation measurements at LHCb

Alison Tully (University of Cambridge)

Backup

LHCb detector

Alison Tully (University of Cambridge)

CPV in b and c at LHCb

LHCb detector

- Specialised b physics experiment
- Unique forward acceptance $2 < \eta < 5$
 - 27% of b quarks fall inside the acceptance
- Also world's largest sample of charm decays
- Excellent performance [Int. J. Mod. Phys. A 30, 1530022 (2015)]
 - Impact parameter resolution $\approx 200 \mu m$
 - Decay time resolution $\approx 45\,\text{fs}$
 - $\bullet\,$ Momentum resolution $\approx 0.5\%$
 - Particle Identification (PID)
 - $\varepsilon(K) \approx 95\%$

• Mis-ID
$$(\pi o K) pprox 5\%$$

