Search for Lepton Flavour Violating Decay in $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$

Nafisa Tasneem

ntasneem@uvic.ca ntasneem@stfx.ca

The Lake Louise Winter Institute, Banff, Alberta. February 23, 2018.

Outline of the Talk

- Charged Lepton Flavour Violation
- Asymmetric PEP-II Collider and BaBar Detector
- Data and Experiment
- Analysis Strategy
- Results
- Conclusion

Charged Lepton Flavour Violation

- In Standard Model (SM) , Lepton Flavour is conserved for zero degenerate ν masses
- Now we have clear indication that v's have finite mass
- All interactions must conserve energy, charge, lepton number & type, baryon number
- Lepton Flavour is violated in nature: but by HOW MUCH?

Lepton Flavour Conserving Process

Forbidden

• SM extended to include finite ν mass and mixing predicts Lepton Flavour Violation (LFV).

How Much Violation?

$$\begin{split} F(\mu \to e\gamma) &\approx \frac{G_F^2 m_\mu^5}{192\pi^3} & \left(\frac{\alpha}{2\pi}\right) \quad sin^2 2\theta sin^2 \left(\frac{1.27\Delta m^2}{M_W^2}\right) \\ &\mu - decay \quad \gamma - vertex \quad \vartheta - oscillation \\ &\approx \frac{G_F^2 m_\mu^5}{192\pi^3} & \left(\frac{3\alpha}{32\pi}\right) \quad \left(\frac{\Delta m_{23}^2 s_{13} c_{13} s_{23}}{M_W^2}\right)^2 \end{split}$$

with $\Delta \sim 10^{-3} eV^2$, $M_W \sim O(10^{11}) eV \approx O(10^{-54})$

Experimentally not measurable!!

Indirect Limit on Upsilon Decays

- No direct observation, but $\mu \rightarrow eee$ observable (?)
- Calculated theoretical constraints on the limit (indirect):

$$BR(\Upsilon \to e\mu) = BR(\mu \to eee) \frac{\Gamma(W \to e\nu)^2}{\Gamma(\Upsilon)\Gamma \to ee} (\frac{M_{\Upsilon}}{M_W})^6$$

S.Nussinov, et. al. PRD 63, 016003 (2001)

$$\begin{array}{l} \mathrm{BF}(\mu \rightarrow eee) < 2\text{-}4 \times 10^{-8} \\ \mathrm{BF}(\Upsilon \rightarrow ee) & <3\text{-}6 \times 10^{-3} \\ \mathrm{BF}(\Upsilon (3S) \rightarrow e^{\pm}\mu^{\mp}) < 2.5 \times 10^{-8} \end{array}$$

Bellgardt, et al., Nucl.Phys. B299 (1988)

Belle PLB 660,154 (2008)

Calculated according to Nussinov

New Physics

- Lepton flavour violating decays are predicted by many beyond SM processes
- Clear experimental signature = "New Physics"

Existing Experimental Searches

No experimental measurement of the decay $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$ yet!

Measurements	Results	CL (%)	Collaboration
$BF(\Upsilon(3S)\to e^\pm\tau^\mp)$	$< 4.2 \times 10^{-6}$	90	L D L and at al. DD D80 111102
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 3.1 × 10 ⁻⁶	90	[BaBar Collaboration]
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 20.3 × 10 ⁻⁶	95	Love et al. PRL 101, 201601 [CLEO Collaboration]

Asymmetric PEP-II Collider & BaBar Detector

How small a rate can BaBar measure?

Data, MC Sample and Blind Analysis Technique

Data $\Upsilon(3S)$, $\sqrt{s} = 10.36 \text{ GeV}$	Luminosity (fb ⁻¹)	Upsilon Numbers
Pre-unblinded Sample (3%)	0.93	$(4.06 \pm 0.04) \times 10^{6}$
Data Sample	27.0	$(117.7 \pm 1.2) \times 10^{6}$
Total	27.9	$(121.7 \pm 1.2) \times 10^{6}$

MC Signal (for Background)	Luminosity (fb ⁻¹)	Generators
$e^+e^- ightarrow \mu^+\mu^-$	68.55	KK2F
$e^+e^- \rightarrow e^+e^-$	3.26	BHWIDE
$e^+e^- \rightarrow \tau^+\tau^-$	62.37	KK2F
$e^+e^- \rightarrow uds$	19.15	EvtGen
$e^+e^- \rightarrow c\bar{c}$	41.23	EvtGen
Generic $\Upsilon(3S)$ MC	61.44	EvtGen

MC signal: $e^+e^- \rightarrow \Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: 103000 events

- Blind analysis was performed to eliminate experimenter's bias.
- All selection criteria and uncertainty studies performed without looking at the result of data sample.
- Results were unblinded by the approval of Review
 Committee and presented to American Physical Society
 Conference at FermiLab on Aug 3, 2017.

Control Data Sample

Data and MC	Luminosity (fb ⁻¹)	Purpose
Data $\Upsilon(4S)On$ Resonance, $\sqrt{s} = 10.58$ GeV Preselected as $e^{\pm}\mu^{\mp}$ events	78.31 ± 0.35	Data driven continuum background estimate
Data Y(4S)On Resonance, $\sqrt{s} =$ 10.58 GeV Preselected as $\mu^{\pm}\mu^{\mp}$ events	78.31 ± 0.35	Systematics
Data $\Upsilon(4S)$ Off Resonace	7.75 ± 0.04	BG Control Sample
Data Y(3S)On Resonace, $\sqrt{s} = 10.36$ GeV Preselected as $\mu^{\pm}\mu^{\mp}$ events	27.96±0.16	Systematics
Data $\Upsilon(3S)$ Off Resonace	2.62 ± 0.02	BG Control Sample

Signal and Background Characteristics

- $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: Required two primary track signal of e^{\pm} and μ^{\mp} .
- CM Momentum: $P_{e^{\pm}} \sim \frac{\sqrt{s}}{2}$ and $P_{\mu^{\pm}} \sim \frac{\sqrt{s}}{2}$

Analysis Strategy

- **Pre-Selection:** Needs a special A background filter to collect $e^{\pm}\mu^{\mp}$ events efficiently.
- User defined Selection: Applied on the pre-selected events
- **PID Selection:** Multivariate Technique applied, 16 different PID selector used in optimization $\binom{s}{\sqrt{BG}}$

Pre-Selection:	User defined Selection:
 Distance of closest approach of any track vertex w.r.t. the beam spot in Drift Chamber in the x - y plane < 1 cm and in the z plane < 4 cm; 	2 tracks (1 electron and 1 muon in the final state), one in each hemisphere;
Number of hits in the Drift Chamber > 0 . Transverse Momentum $p_T > 100$ MeV;	$24^{\circ} < \theta_{Lab} < 130^{\circ}$ EMC acceptance for both tracks.
Exactly 2 oppositely charged tracks ;	The lepton momenta must satisfy the following
Polar angle of the two tracks: $2.8 < (\theta_1 + \theta_2) < 3.5$;	condition
Sum of momentum of the two tracks $ P_1 + P_2 > 9$ GeV	$\left(\frac{p_e}{E_{Beam}} - 1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}} - 1\right)^2 < 0.01 \text{ where}$ $E_{Beam} = \frac{\sqrt{s}}{2}$
One and only one electron of the two tracks uses $E/P > 0.8$	Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to ensure they emerged as back to back.
Acolinearity angle associated with the two tracks < 0.1 radians in CM.	Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.

Data/MC Comparison

Distribution of $e^{\pm}\mu^{\mp}$ mass before applying any user defined selection criteria, only preselection criteria has been applied on the 3% pre-unblinded data.

Selection Criteria in (N-1) plots

The lepton momenta must satisfy the following condition which is defining a circle of radius $\left(\frac{p_e}{E_{Beam}}-1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}}-1\right)^2 < 0.01$ where $E_{Beam} = \frac{\sqrt{s}}{2}$

Selection Criteria in (N-1) plots

Events Number

Mass Distribution

Systematic Uncertainty on Signal Efficiency

Side Bands

- Controlled Sample: A data set where two major cuts were reversed to check the data/MC agreement.
- Disagreement arises due to uncertainties in PID, Tracking, kinematics, trigger.
- Uncertainty in "Side Bands": 1.2%

Summary: Background, Uncertainty, Candidate

liminary	Source	Data Driven Continuum Background (events seen 34)	Peaking Background from Generic Y(3S) MC (events seen 4)		
ır Prel	Tight PID selection	12.2 ± 2.1	0		
BaBa	Loosen PID selection	N/A	1.80 ± 0.9		
	Values		Uncertainties		
	 ε_{SIG} (systematics) In the "Lepton Mor In the "Back to back In all other cuts on ε_{SIG} (total) 	nentum" cut k" cut the "Side bands"	$\begin{array}{l} 0.029\ (2.9\%)\\ 0.011\ (1.1\%)\\ 0.012\ (1.2\%)\\ \end{array}\\ 0.2342\pm(0.0077_{\rm SYST}\pm0.0013_{\rm STAT})\\ \end{array}$		
reliminary	N _Υ (27.0 fb ⁻¹)		N _γ (27.0 fb ⁻¹)		$0.2342 \pm 0.0078_{TOTAL} (3.3\%)$ (117.7 ± 1.18) × 10 ⁶ (1.02%) [PRL104, 151802]
Bar Pr	Total Background (equivalent to 27.0 fb ⁻¹)		12.2 ± 2.3 (18.9%)		
Ba	Candidate Seen in Data Sample		15		

ntasneem@uvic.ca

Results [BaBar Preliminary]

Data Sample
$$(27.0 fb^{-1})$$

Branching Fraction: $N_{Candidate} - N_{BG}$

$$(1.0 \pm 1.4_{stat(N_{Candidate})} \pm 0.8_{syst}) \times 10^{-7}$$

 $\varepsilon_{sig} \times N_{\Upsilon}$

Upper Limits with
Confidence Level
of 90%: $< 3.6 \times 10^{-7}$ Barlow Method
 $< 3.6 \times 10^{-7}$ CLs Method

Barlow Method: [R. Barlow, ScienceDirect 149, 2 (2002), pp 97-102.] **CLs Method:** [A. L. Read, J. Phys. G28 (2002) 2693- 278 2704]

Conclusion

• This is the first reported experimental upper limits on $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$

 $\Upsilon(3S) \to e^{\pm}\mu^{\mp} < 3.6 \times 10^{-7} @ 90\%$ C.L.

- Our reported result is several orders of magnitude stronger that this limit according to the ref [S.Nussinov, et. al. PRD 63, 016003 (2001), Gutsche et. al. PRD 83, 115015 (2011)] in case LFV vertex involves to some kinematical suppression such as anomalous magnetic moment coupling which can yield a limit ~ up to < 5×10^{-4} .
- Searches for LFV and rare Y decays can be improved with Super B-Factory as BELLE II and other future high luminosity experiments.
- Thanks to my BaBar Colleagues for providing all kinds of support for this analysis.

Backup: Upsilon System

At the first three resonances, the Upsilon system can only decay by the b quark and anti b quark annihilating, as shown in the decay diagrams (a)-(c):

At the fourth resonance, called the Upsilon(4S), there is enough energy in the excited stated to create a light quark/anti-quark pair, producing a pair of B mesons, as shown in diagram (d) above. Once produced, B mesons can decay via any one of the processes illustrated here

ntasneem@uvic.ca

(e) Penguin

Back up: Theoretical Upper limit (Indirect)

Nussinov, Peccei, Zhang [1]

- Assume coupling of Υ to eµ looks like: $L_{eff} = gV_{e\mu}\bar{\mu}\gamma_{\alpha}eV^{\alpha}$
- Through Fig 1. this coupling contributes to $A \ (\mu \rightarrow 3e)$

$$A(\mu \to 3e) = (\bar{u}_{\mu}(p)\gamma^{\alpha}u_{e}(k_{3}))(\bar{v}_{e}(k_{1})\gamma_{\alpha}u_{e}(k_{2}))\frac{g_{V_{e\mu}}g_{V_{ee}}}{M_{V}^{2} - S} \quad ---(1)$$

Since
$$[\Gamma(V \to e^+e^-)] \sim g^2 V_{ee} M_V$$
 and
 $[\Gamma(V \to e^{\pm}\mu^{\mp})] \sim g^2 V_{e\mu} M_V$, while $[\Gamma(W \to e\nu)] \sim g_W^2 M_W$

$$[BR(\mu \to 3e)]_{V-exch} \approx \frac{[\Gamma(V \to e^+e^-)][\Gamma(V \to e^\pm \mu^\pm)]}{[\Gamma^2(W \to e\nu)]} (\frac{M_W}{M_V})^6 \quad ---(3)$$

 $\mathrm{BR}(\Upsilon(3S) \to e^{\pm} \mu^{\mp} \le 2.5 \times 10^{-8}.$

(Left) A vector exchange diagram contributing to $\mu \rightarrow 3e$ (Right) Ordinary muon decay, $\mu \rightarrow ev\bar{v}$, which proceeds via W exchange.

- BF($\mu \rightarrow \text{eee}$) $\leq 1.0 \times 10^{-12}$
- BF($\mu \rightarrow e \nu \bar{\nu}$) $\simeq 100 \%$
- BF(W $\rightarrow e^+ \nu) \simeq (10.71 \pm 0.09) \%$
- BF($\Upsilon(3S) \to l^+l^-) \simeq (2.18 \pm 0.21) \%$
- $\Gamma(\Upsilon(3S) = (20.32 \pm 1.85) \ keV$
- $\Gamma(W) = (2.046 \pm 0.049) \ GeV$

Back Up: Signal Efficiency and Selection Summary

BaBar Preliminary

Pre-selected Events	MC Signal: 82612	<i>BG Y</i> (3 <i>S</i>) MC 7134301	<i>BGY</i> (4 <i>S</i>) MC 152445188	Candidate Y(3S) 254122200
(N-1) Selection	Signal Efficiency (ε _{eµ})	BG Events Y(3S) MC	Data Driven Continuum BG Υ(4S)On	Candidate seen in Data
PID selection	0.2355 ± 0.0013	0	14.7 ± 2.3	18
Lepton Momentum	0.2684 ± 0.0012	82.67 ± 6.03	263.4 ± 9.7	302
Back to back	0.2402 ± 0.0013	0.44 ± 0.44	37.7 ± 3.7	39
EMC acceptance	0.2495 ± 0.0013	0	13.9 ± 2.2	17
EMC Energy	0.2452 ± 0.0013	0	17.6 ± 2.5	19
All Cuts	0.2342 ± 0.0013	0	12.2 ± 2.1	15

Backup: Systematic Uncertainty in the Sidebands

Mass distributions for $\Upsilon(3S)$ On data and MC control samples (τ -pair) N_{BG} : $\Upsilon(3S)$, $\mu^+\mu^-$, Bhabha, uds, $c\bar{c}$

	Blue Side band (3-4) GeV	Red Side band (4-6) GeV	Black Side band (6-8) GeV
R± σ_{R}	0.9825 ± 0.0029	0.9795 ± 0.0032	1.0072 ± 0.010

Back up: Systematic Uncertainty in the "lepton mom plane" cut

	Signal MC	Data Υ(4 <i>S</i>)0 <i>n</i>	Background MC (µµ)
$\frac{\varepsilon_{0.0115-0.010}^{0.0115-0.010}}{\varepsilon_{e\mu}}$	$\frac{0.001526}{0.234243} = 0.0065$	$\frac{0.0000010}{0.000028} = 0.0360$	$\frac{0.00001}{0.00046} = 0.0217$

- Uncertainty between data and MC signal: 0.0360-0.0065= 0.029
- Uncertainty between data and MC ($\mu\mu$): 0.0360-0.0217= 0.014 (for cross check)

Back up: Systematic Uncertainty in "back to back" cut

$\frac{\varepsilon_{179.1^{\circ}-178.9^{\circ}}^{179.1^{\circ}-179^{\circ}}}{\varepsilon_{e\mu}} \qquad \qquad \frac{0.000538}{0.234243} = 0.002 \qquad \qquad \frac{0.0000035}{0.000028} = 0.013$		Signal MC	Data $\Upsilon(4S)On$
*	$\frac{\varepsilon_{1790}^{179.1^{0}-179^{0}}}{\varepsilon_{e\mu}}$	$\frac{0.000538}{0.234243} = 0.002$	$\frac{0.00000035}{0.000028} = 0.013$

• Uncertainty between data and MC signal: 0.013-0.002 = 0.011