KM3NeT

KM3NeT

NFN Napoli, Università degli Studi di Napoli Federico I

R.Mele

On behalf of the KM3NeT Collaboration

Minister

Lake Louise Winter Institute 2018, 18 - 24 Feb 2018, Lake Louise, Canada

Elcol

Outline

- Physics motivation and Detection principles of neutrino detection
- KM3NeT
 - ARCA & ORCA <u>A</u>stroparticle & <u>O</u>scillations <u>Research</u> with <u>C</u>osmics in the <u>A</u>byss
 - Design, architecture, and status
 - Science goals
 - Performances and Sensitivity
- Conclusions and Outlook

Physics with high-energy neutrinos

Charged Cosmic Rays

Copiously produced
 Directions scrambled by magnetic fields

High Energy Gamma Rays

 Produced both by hadronic and leptonic mechanisms
 Absorbed by dust and radiation

UltraHigh Energy Cosmic Rays

Not strongly deflected by magnetic field
 Limited by GZK cut-off

Neutrinos

High energy neutrino detection

 V_{μ} CC, V_{τ} -> μ interactions , track reconstruction only V_{x} all neutrino flavours, CC & NC interactions, shower reconstruction

U±

R.Mele - LLWI2018 - 18-24th Feb 2018, Lake Louise, Canada

 μ^{\pm}

KM3NeT Collaboration

J. Phys. G 43 (8), 084001, 2016

Astroparticle Research Oscill with Cosmics In the Abyss with Cos High-energy (TeV-PeV) Low-ener neutrino astrophysics atmos

Oscillation Research with Cosmics In the Abyss Low-energy (~GeV) studies of atmospheric neutrinos

KM3NeT science goals

- Neutrino Oscillations
- Neutrinos Mass Hierarchy
- Sterile neutrinos
- Neutrinos from Supernovae

- <u>Neutrinos from extra-terrestrial</u>
 <u>sources</u>
 - Neutrinos from point-like sources
- Origin and production mechanism of HE CR

KM3NeT detector design

- Detection principle Optical Cherenkov radiation
- 6 orders of magnitude in energy (GeV-PeV)
- All flavour detection
- A 3D array built with a modular design
- Optical sensor: multi-PMT (DOM)
- Detection units (DU): vertical slender strings host 18 DOMs
- Building blocks of 115 DUs each
- Power and data distributed by a single backbone cable with breakouts at DOMs
- Sea network of submarine cables and Junction Boxes connected to shore via a main e/o cable
- All data to shore

	ARCA	ORCA
Location	Italy	France
DU distance	90m	20m
DOM spacing	36m	9m
Instrumented mass	2*500Mton	5.7 Mton

KM3NeT DOM and DU

Optical module

- 31 x 3" PMTs
- Light reflector rings around PMTs
- LED & acoustic piezo inside
- Tiltmeter/compass
- Gbit/s fibre DWDM
- Hybrid White Rabbit
- Digital photon counting
- Directional information
- Wide angle of view
- Improved background rejection
- Compact and cost effective design: 1 DOM equivalent to 3 Antares OMs

Event topologies

Upgoing v_{μ} CC event or v_{τ} -> μ – "track like" Interaction can occur far from the detector providing a large Effective Volume

Contained v_x NC event – "shower" Events contained in the detector: smaller Effective Volume

First ARCA DU preliminary results

Muon flux measurement

Validation of technology

First ORCA DU preliminary results

R.Mele - LLWI2018 - 18-24th Feb 2018, Lake Louise, Canada

(d) (d) (d)

-

() ()

(B) (B)

٢

٢

0

8 8

KM3NeT/ARCA performance

Shower events (v_e , v_τ CC, NC)

- Angular resolution <1.5°
- Energy resolution ≈ 5%

Tracks events (v_{μ} CC and v_{τ} -> μ)

 Angular resolution <0.1° for E_v>100TeV

KM3NeT Pointlike source sensitivity

Directly constrain (or discover) hadronic scenario in galactic TeV gamma sources

2 Building Blocks

- Muon neutrinos still dominant in analysis
- More than order of magnitude improvement in Southern hemisphere
- Good acceptance in few-TeV range : Directly constrain (or discover) hadronic scenario in galactic TeV gamma sources

ARCA sensitivity to neutrino diffuse flux

Up-going track events events

Analysis based on Max. likelihood
 Cuts on
 θ_{zen} >80°
 Λ (reconstruction quality
 parameter), N_{hit} (number of hits ->
 parameter related to the muon
 energy)

2 Building Blocks

For combined analisys 5 σ significance in less than 1 year

KM3NeT/ORCA performance

7°(5°) for 5(10) GeV for both channels

ORCA: NMH sensitivity

- Trigger simulation, track and shower reconstruction included.
- Expect an increase in sensitivity thanks to the improvements reached in the trigger and reconstruction
- At least 3σ sensitivity to NMH in ~3 years
- The combination of NH and upper octant of θ_{23} gives significantly improved sensitivity (>5 σ in 3 years)

See KM3NeT Letter of Intent: J. Phys. G 43 (8), 084001, 2016

Conclusions and outlook

- KM3NeT will be the biggest detector in the Northern Hemisphere with the best angular resolution
 - Completion of both telescopes expected in 2020
- Exciting physics prospects:
 - Investigate the neutrino sky with very good resolution and sky coverage with ARCA
 - Confirm IC flux in less than a year
 - Precise studies on potential HE neutrino sources
 - Constrain (or discover) hadronic scenario in galactic gamma sources
 - Allows for all flavour neutrino astronomy and spans with ARCA and ORCA a large energy window
 - ORCA will be competitive with JUNO in time and performance
 - Determination of the neutrino mass hierarchy in ~3 years

Thanks for the attention

© Amazing Sky Photography Astrophotography by Alan Dyer / amazingsky.com

Backup Slides

KM3NeT development

Phase	Blocks / DUs	Primary deliverables / site(s)	Funding Construction
1	0.2 / 31	Proof of feasibility and first science results KM3NeT-It + KM3NeT-Fr	Fully funded 2015-17
2.0	2 /230 1 / 115	Measurement of neutrino signal reported by IceCube All-flavor neutrino astronomy KM3NeT-It Neutrino Mass Hierarchy KM3NeT-Fr	Funding secured for 34 M€ in Italy and 8 M€ in France Applications ongoing in France, Italy and The Netherlands
3	6 / 690	Neutrino astronomy including galactic sources Multiple sites	t.b.d.