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Reactor B2
● 4.25 GW

th

Reactor B1
● 4.25 GW

th

Near detector 
● Operating since Jan 2015
● Baseline ~ 400 m
● Overburden ~ 120 mwe Far detector 

● Operating since Apr 2011
● Baseline ~ 1050 m
● Overburden ~ 300 mwe

Experimental site
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θ
13 

Oscillations

matter effects
safely negligible! 

Sin²2θ
13

Sin²2θ
13

FD: L~1050m ND: L~400m
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IBD threshold 1.8 MeV IBD threshold 1.8 MeV
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● Two event coincidence:
    i) prompt signal:
      - positron annihilation
    ii) delayed signal:
      - n-capture on H or Gd after n-thermalization
      - characteristic energy deposit of
        8.0 MeV (Gd)/ 2.2 MeV (H)
      - characteristic delay time ΔT~ 30 µs/ 220 µs  

 

Neutrino Signal
Inverse beta decay IBD

8 MeV/
2.2 MeV

Eνe 
+ 0.78 MeV

Gd loaded liquid 
scintillator target

prompt

delayed

Reactor flux arXiv:1105.6079 [hep-ex], modifiedp+ν̄e→  e+
+n
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Neutrino Target (NT)
Gd loaded (1 g/l) liquid scint. 
(10 m³ )

Detector

(Nd: water shielding)(Sketch of FD, ND almost identical)
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Neutrino Target (NT)
Gd loaded (1 g/l) liquid scint. 
(10 m³ )

Gamma Catcher (GC)
Liquid Scintillator (22 m³ )
Measures γ escaping the target

Detector

(Nd: water shielding)(Sketch of FD, ND almost identical)
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Neutrino Target (NT)
Gd loaded (1 g/l) liquid scint. 
(10 m³ )

Gamma Catcher (GC)
Liquid Scintillator (22 m³ )
Measures γ escaping the target

Buffer (B)
Non-scintillating mineral oil
(110 m³ )
390 10" PMT
Shielding against external γ

Detector

(Nd: water shielding)(Sketch of FD, ND almost identical)
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Neutrino Target (NT)
Gd loaded (1 g/l) liquid scint. 
(10 m³ )

Gamma Catcher (GC)
Liquid Scintillator (22 m³ )
Measures γ escaping the target

Buffer (B)
Non-scintillating mineral oil
(110 m³ )
390 10" PMT
Shielding against external γ

Inner Veto (IV)
Liquid Scintillator (90 m³) 
78 8" PMT
Vetos atmosperic µ and neutrons
Shielding

Outer Veto (OV)
Plastic scintillator strips
vetos atmospheric μ

Detector

(Nd: water shielding)(Sketch of FD, ND almost identical)
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Detector

Inner Inner 
VetoVeto

BufferBuffer

Neutrino-Neutrino-
TargetTarget

Gamma-Gamma-
CatcherCatcher
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IBD Selection
Gd Gd+H

● Selecting n-Gd capture in Neutrino 
Target only

● Selecting n-Gd and n-H capture 
in Neutrino Target

 and 
Gamma Catcher

● Statistics increase by ~2.5
● Immune to liquid exchange   

between ND Neutrino Target
 and Gamma-Catcher 

Gd

Gd+H
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Datasets

Rate[1/day] vs. time
FDI (FD before ND existed) 455 days lifetime + 7 days lifetime reactor off

2 Reactors2 Reactors

1 Reactor1 Reactor

Rate[1/day] vs. time
ND 258 days lifetimeFDII (FD parallel to ND) 363 days lifetime

Rate[1/day] vs. time
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Datasets

ND FDI

● Energy window on purpose extended to background dominated regions
- Up to 8 MeV signal dominated 
- 8-12 MeV Lithium dominated
- >12 MeV fast n + stopping µ dominated

● => background estimate for fit

+ FDI Reactor-Off dataset
   (highly constrainting backgrounds!!!) 

FDII

~43 000 IBD 
candidates

~48 000 IBD 
candidates

~210 000 
IBD candidates

~48 000 IBD 
candidates
~48 000 IBD 
candidates
~48 000 IBD 
candidates
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Latest θ
13

 Results (Sep 2016)

ND FDI FDII

Rate + Shape χ²-fit of data to prediction:

sin²(2θ
13

)= 0.119±0.016   with χ2 / ndf: 236.2 / 114

● Cross checked by Data-Data fit : sin²(2θ
13

)= 0.123±0.023
● Cross checked by three groups 
● Not optimal χ2 due to data-prediction mismatch observed with both detectors 



  

15

Sterile Neutrino Signatures

P ē→ ē≈1−sin2(2θ13)sin2(Δmee
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4 E )−sin2(2θ14)sin2(Δm41
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4 E )
Standard part sterile part

amplitude

Sin² 2θ
14

L Δm²
41

:= anti electron neutrino surv. prob.

FD: L ≈ 1050m

Sin²2θ
1

3

● Repeating signature, which is different for ND and FD
→ hard to be matched by any single systematic effect

frequency
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Sterile Neutrino Signatures
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L Δm²
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:= anti electron neutrino surv. prob.
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freq.  ND 
~ 400/1050 x freq FD
for fixed Δm²

41
  

FD: L ≈ 1050m ND: L ≈ 400 m

Sin²2θ
1

3

Sin²2θ
1

3

● Repeating signature, which is different for ND and FD
→ hard to be matched by any single systematic effect
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Spectral Distortion

Spectral distortion cancels out in FD/ND ratio
=> can not be explained by sterile neutrinos

FDII/ND
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Sensitivity to θ
14

● Current situation allows for Data-Data approach only
● Sterile analysis is statistically limited
● Results expected soon
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Summary

● Reactor neutrino IBD detection using n-Gd and n-H capture   

● Sensitivity to θ13 and θ14

● Latest result: sin²(2θ13)= 0.119±0.016

● Precise measurement of detector volume during decommissioning  

– Dominant uncertainty on relative near/far signal normalization: 
now: 0.7% uncorrelated near/far

– Dominating uncertainty in θ13 fit

– Not important for sterile analysis

● Double Chooz is sensitive to light sterile neutrino
(|Δm²41|~ 0.005-0.1 eV²)
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Double Chooz Collaboration

About 150 scientistis in 7 countries

Spokesperson: Anatael Cabrera (CNRS/IN2P3 - APC)
Project Manager: Christian Veyssière (CEA Saclay)

Thanks for your attention! 
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Backup
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Reactor Neutrino θ
13

 Experiments
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Double Chooz Daya BayRENO

Chooz reactors
France /Ardennes

YonGwang reactors
South Korea

Daya Bay reactors
South China (close Hong Kong)

● Systematic uncertainties below 1% required to
measure small θ

13 
oscillation

● Can not use reactor flux prediction only
Several identical detectors at different distances
- Near detector measures unosillated flux
- Far detector measures energy dependent deficit
   due to disappearance
- Identical detector design cancels systematics!

Three major experiment: Double Chooz, RENO, Daya Bay
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Latest θ
13

 Results (Sep 2016)

Difference to Daya Bay 2.2 σ

Difference to RENO 1.8 σ  
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Calibration

● two systems for calibration source deployment in the GC/ along 
the z-axis

● 252-Cf used as neutron source
● Characteristic energy deposit of n-Gd and n-H capture during 

source deploiment used to set energy scale
● Two light injection systems for regular monitoring of 

PMTs/scintillators 
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Accidental rejection

Neutrino IBD MC Accidentals

● Artificial neuronal network (ANN) using time and space difference and visible delayed energy
=> signal to background ratio increase > 7 on H data (arXiv:1510.08937)
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Uncorrelated Backgrounds

Accidentals
- due to natural radioactivity
- random coincidence 

Light Noise
- Light emission by the PMTs themselves
- PMTs mostly light up themselves
  => easy to reject
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Muon induced Backgrounds

Lithium (Li)
- atm. µ produce long
  lived β-n decay isotopes
  9Li, 8He (257 ms resp.
  172 ms mean live time)   
- electrons cannot be         
  distinguished from
  positrons

Crossing muon
- large energy deposit =>  efficiently rejected 

Fast neutrons (FN)
- induced by spallation due to atm. µ (cf. µ

1
)

- protein recoil and n-capture may mimic IBD signal

Stopping Muons (SM)
- May enter in particular throught the chimney (cf. µ

2
)

- end off the µ-track mimics prompt event
- Michel electron minimcs delayes event  
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Backgrounds

Accidentals
- due to natural radioactivity
- random coincidence 
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Backgrounds

Fast neutrons (FN)
- induced by spallation due to atm. µ (cf. µ

1
)

- protein recoil and n-capture may mimic IBD signal

Stopping Muons (SM)
- May enter in particular throught the chimney (cf. µ

2
)

- end off the µ-track mimics prompt event
- Michel electron mimics delayed event  
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Datasets

Rate[1/day] vs. time
FDI (FD before ND existed) 455 days lifetime + 7 days lifetime reactor off

2 2 
ReactorsReactors
1 Reactor1 Reactor

Rate[1/day] vs. time
ND 258 days 
lifetime

FDII (FD parallel to ND) 363 days 
lifetimeRate[1/day] vs. time
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Backgrounds

Lithium (Li)
- atm. µ produce long
  lived β-n decay isotopes
  9Li, 8He (257 ms resp.
  172 ms mean live time)   
- electrons cannot be         
  distinguished from
  positrons

Fast neutrons (FN)
- induced by spallation due to atm. µ (cf. µ

1
)

- protein recoil and n-capture may mimic IBD signal

Stopping Muons (SM)
- May enter in particular throught the chimney (cf. µ

2
)

- end off the µ-track mimics prompt event
- Michel electron mimics delayed event  
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Spectral distortion vs. baseline

http://www.dchooz.org/DocDB/0069/006919/006/nshape_brugiere_update7.pdf
Bessing abklären

ND FD II

FD I Spectral distortion observed in both 
detectors 
=> very unlikely to be a sterile signature

http://www.dchooz.org/DocDB/0069/006919/006/nshape_brugiere_update7.pdf
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Mass orderings
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PMNS Matrix
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IBD selection
Single event selection 

● Not light noise, muon, or random trigger
● Not within 1.25 ms after a muon

IBD prompt-delayed pair selection

● Eprompt , Edelayed, ΔT, ΔR

Background rejection:
● Multiplicity cut
● No IV, OV coincidence
● Artificial neuronal network (ANN) using E

delayed
, ΔT, ΔR

● Stopping µ veto cut
● Lithium veto cut 
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IBD selection
Single event selection 

● Not light noise, muon, or random trigger
● Not within 1.25 ms after a muon

IBD prompt-delayed pair selection

● Eprompt , Edelayed, ΔT, ΔR
p+ν̄e→  e++n

Inverse beta decay IBD

Background rejection:
● Multiplicity cut
● No IV, OV coincidence
● Artificial neuronal network (ANN) using

E
delayed

, ΔT, ΔR
● Stopping µ veto cut
● Lithium veto cut 

prompt

delayed
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IBD Selection
Gd Gd++

● Selecting n-Gd capture in Neutrino 
Target only

-  less statistics
+ less background
-  spilling relevant

+ more statistics
-  more background 
+ spilling irrelevant

● Selecting n-Gd and n-H capture in 
Neutrino Target and Gamma 
Catcher
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Spectral Distortion Seen by Other 
Experiments

Reno

Double Chooz

Daya Bay NEOS

Spectral distortion seen by several 
experiments

 arXiv:1607.05378  arXiv:1610.04326
arXiv:1610.05134

L~ 24m
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Comparision of Experiments

Experiment 
Thermal 
Power 
(GW)

Distance 
Near/Far 

(m)

Depth 
Near/Far 
(mwe)

Target 
mass 
(ton)

Double 
Chooz 8,5 400/1050 120/300 8/8

RENO 16,8 290/1380 120/450 16/16

Daya Bay 17,4 360(500)/
1985(1613) 260/860 40x2/80

10
50

 m

400 m

8.5 GWth

8t

8t

290 m 1380 m

16t 16t

16.8 GWth

40t

40t
80t

365 m

490 m

1650 m

17.4 GWth

DC

DB

RENO

● Very similar design
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Reactor Neutrino θ
13

 Experiments
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Double Chooz Daya BayRENO

● Systematic uncertainties below 1% required to
measure small θ

13 
oscillation

● Can not use reactor flux prediction only
Several identical detectors at different distances
- Near detector measures oscillated flux
- Far detector measures energy dependent deficit
   due to disappearance
- Identical detector design cancels systematics!

Three major experiment: Double Chooz, RENO, Daya Bay
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Datasets
Before 2015 Since 2015

X
Bugey 4 used 
as virtual ND
(baseline 15 
m)

FDI  455 days lifetime
        + 7 days lifetime reactor off

ND 258 days 
lifetime
FDII 363 days 
lifetime

Double Chooz has been operated 3 years in full configuration 
(detectors still running)

Datasets can be combined!
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Spectral Distorion vs. Reactor 
Power

Excess/deficit is consistent to be proportional to reactor power

ND
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Full oscillation prob.
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