Non-relativistic Quantum Gravity

Oriol Pujolàs

CERN Theory Retreat
Les Houches
November 4-6, 09
Motivation

A fundamental problem in particle physics: Quantum Gravity

- String Theory is perhaps already close enough
 \[\rightarrow \text{QFT framework} \]
A fundamental problem in particle physics: Quantum Gravity

- String Theory is perhaps already close enough
 -> QFT framework

Is it possible to have QG within QFT?

- Asymptotic safety (Weinberg ’79)?
- ‘Hořava Gravity’ (Hořava ’09)
 -> Lorentz invariance

A non-relativistic QG field theory which is (power-counting-) renormalizable
Motivation

A fundamental problem in particle physics: Quantum Gravity

- String Theory is perhaps already close enough
 -> QFT framework

Is it possible to have QG within QFT?

- Asymptotic safety (Weinberg ’79)?
- ‘Hořava Gravity’ (Hořava ’09)
 -> Lorentz Invariance

a non-relativistic QG field theory which is (power-counting-) renormalizable

Really?
Motivation

Early attempt: ‘Higher order gravity’ (Stelle ‘78)

\[\mathcal{L} = \sqrt{-g} \left\{ R + (Riem)^2 \right\} \]

\[G \approx \frac{1}{p^2 + a p^4} \]

=> Loops are less divergent

Renormalizable, yes.

But Ghosts!
Hořava’s proposal: Anisotropic Scaling

in the UV, \(w^2 \sim k^{2z} \quad z > 1 \)

\[G = \frac{1}{w^2 - k^2 - a k^{2z}} \]

=> Loops are less divergent (& no ghosts)
Motivation

Hořava’s proposal: Anisotropic Scaling

in the UV, \(w^2 \sim k^{2z} \quad z > 1 \)

\[
G = \frac{1}{w^2 - k^2 - a k^{2z}} \quad \Rightarrow \quad \text{Loops are less divergent (& no ghosts)}
\]

Eg: \[
L = (\dot{\phi})^2 + \phi \Delta \phi + \frac{\phi \Delta^2 \phi}{M^2} + \frac{\phi^{10}}{\Lambda^6}
\]

\[
L = (\dot{\phi})^2 + \phi \Delta \phi + \frac{\phi \Delta^3 \phi}{M^4} + \frac{\phi^n}{\Lambda^{n-4}}
\]

\{ \text{are renormalizable!} \}
Motivation

Hořava’s proposal: Anisotropic Scaling

in the UV, \(w^2 \sim k^{2z} \quad z > 1 \)

\[
G = \frac{1}{w^2 - k^2 - a k^{2z}} \quad \Rightarrow \quad \text{Loops are less divergent (\& no ghosts)}
\]

Eg: \[
L = (\dot{\phi})^2 + \phi \Delta \phi + \frac{\phi \Delta^2 \phi}{M^2} + \frac{\phi^{10}}{\Lambda^6}
\]

\[
L = (\dot{\phi})^2 + \phi \Delta \phi + \frac{\phi \Delta^3 \phi}{M^4} + \frac{\phi^n}{\Lambda^{n-4}}
\]

\[
\Rightarrow \text{are renormalizable!}
\]

\[
\Rightarrow \text{Lifshitz exponent } z > 1 \text{ assists renormalizability}
\]

\[
\Rightarrow \text{Lorentz Invariance ‘emerges’ } \text{@ low energies}
\]
Does the ‘trick’ work for gravity?

Lorentz Invariance => (part of the) gauge group broken

=> additional degrees of freedom

One needs to be extra-careful, or else extra d.o.f.s pathological
Non-Relativistic Gravity

Hořava ‘09

3+1 split: (ADM)

dS^2 = (N^2 - N^i N_i) dt^2 - \gamma_{ij} (dx^i + N^i dt)(dx^j + N^j dt)

S = \int d^3x dt N \sqrt{\gamma} \left[K_{ij} K^{ij} - \lambda (K_i^i)^2 - R_{(3)} - \delta V(\gamma_{ij}, R) \right]

\delta V(\gamma_{ij}, R) = \frac{R_{(3)^2}}{M_P^2} + ... + \frac{R_{(3)^3}}{M_P^4} + ...

t \mapsto \hat{t}(t)

x \mapsto \hat{x}(t, x)

Foliation-preserving diffs

K_{ij} \equiv \frac{1}{2N} \left(\gamma_{ij} - \nabla_i N_j - \nabla_j N_i \right)
Non-Relativistic Gravity

3+1 split: (ADM)
\[ds^2 = (N^2 - N^i N_i) dt^2 - \gamma_{ij} (dx^i + N^i dt)(dx^j + N^j dt) \]

\[S = \int d^3x dt \sqrt{\gamma} \left[K_{ij} K^{ij} - \lambda (K_i^i)^2 - R_{(3)} - \delta V (\gamma_{ij}, R) \right] \]

\[\delta V (\gamma_{ij}, R) = \frac{R^2_{(3)}}{M_P^2} + ... + \frac{R^3_{(3)}}{M_P^4} + ... + \alpha \left(\frac{\partial_i N}{N} \right)^2 + ... \]

\[t \mapsto \hat{t}(t) \]
\[x \mapsto \hat{x}(t, x) \]

Foliation-preserving diffs

\[K_{ij} \equiv \frac{1}{2N} \left(\gamma_{ij} - \nabla_i N_j - \nabla_j N_i \right) \]
Non-Relativistic Gravity

3+1 split: (ADM)

\[
ds^2 = (N^2 - N^i N_i) dt^2 - \gamma_{ij} (dx^i + N^i dt)(dx^j + N^j dt)\]

\[
S = \int d^3x dt \sqrt{\gamma} \left[K_{ij} K^{ij} - \lambda (K_i^i)^2 - R_{(3)} - \delta V(\gamma_{ij}, R) \right]
\]

\[
\delta V(\gamma_{ij}, R) = \frac{R_{(3)}^2}{M_P^2} + \ldots + \frac{R_{(3)}^3}{M_P^4} + \ldots + \alpha \left(\frac{\partial_i N}{N} \right)^2 + \ldots
\]
Non-Relativistic Gravity

3+1 split: (ADM)

\[ds^2 = (N^2 - N^i N_i)dt^2 - \gamma_{ij} (dx^i + N^i dt)(dx^j + N^j dt) \]

\[S = \int d^3x dt N\sqrt{\gamma} \left[K_{ij} K^{ij} - \lambda (K_i^i)^2 - R_{(3)} - \delta V(\gamma_{ij}, R) \right] \]

\[\delta V(\gamma_{ij}, R) = \frac{R_{(3)}^2}{M_P^2} + \ldots + \frac{R_{(3)}^3}{M_P^4} + \ldots + \alpha \left(\frac{\partial_i N}{N} \right)^2 + \ldots \]

eg, sound speed for scalar graviton

\[c_0^2 = \left(\frac{2}{\alpha} - 1 \right) \frac{\lambda - 1}{3\lambda - 1} \]

\[\Rightarrow 0 < \alpha < 2 \]

<table>
<thead>
<tr>
<th>Original proposals</th>
<th>[\alpha = 0]</th>
<th>[\alpha \to \infty] (Projectable, (N(t)))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non-Relativistic Gravity

Isolating the new scalar mode (Stückelbergization)

\[S = S_{GR} + S[\phi; \alpha, \lambda...] \quad \langle \phi \rangle = t \]

\[S[\phi] = (\lambda - 1) M_P^2 \int d^4x \frac{1}{(\partial \phi)^2} \left(\Box \phi - \frac{\partial^\mu \phi \partial^\nu \phi}{(\partial \phi)^2} \nabla_\mu \nabla_\nu \phi \right)^2 + ... \]

\[\phi = t + \chi(t,x) \]

\[S[\chi] = M_P^2 \int d^4x \left[\alpha (\partial_i \dot{\chi})^2 - (\lambda - 1) (\Delta \chi)^2 + \dot{\chi}(\Delta \chi)^2 + ... \right] \]

Strong coupling scale \[\Lambda \approx \frac{\sqrt{|\lambda - 1|}}{M_P} \]
Non-Relativistic Gravity

Present status:

\[\exists 1 \text{ formulation that is free from instabilities, strong coupling} \ldots \]

(“Projectable” version supplemented with all the operators allowed by symmetries)

Blas, OP & Sibiryakov 0909.3525

@ low energies: Lorentz scalar-tensor theory

deviations from GR (parameterized by \(\alpha, \lambda-1 \ldots \)) can be small

first observational tests place mild bounds \(\alpha, \lambda-1 \approx 10^{-1} - 10^{-2} \)

\[\left(G_N^{\text{local}} \neq G_N^{\text{cosmo}} \right) \]
QG at a Lifshitz point?

problems / questions:

- is it really renormalizable?

- is it consistent with observations?

 probably stronger bounds from solar system tests

- recovery of Lorentz Inv in matter sector: fine tuning

\[L = (\dot{\phi})^2 + c_\phi^2 \phi \Delta \phi + \frac{\phi \Delta^3 \phi}{M^4} + ... \]

\(c_\phi^2 \) are (running) coupling constants; generically different in the IR
QG at a Lifshitz point?

- BH physics
- cosmology
 - bouncing cosmologies, generation of scale-inv perturb
- (Dark matter)
- preferred frame effects
 - Solar system anomalies?
Thanks
&
Bon appétit !