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QGP

HICs and Flow

• Collectivity: anisotropy in space is transferred to momentum

• It is well described by (almost) ideal hydrodynamics. 
Deviations from ideal are parameterized by the viscosity.

• At RHIC it is much smaller than any other known substance. 
Perturbative estimates lead to a much larger value.
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FIG. 8: (Color online) Comparison of hydrodynamic models to experimental data on charged
hadron integrated (left) and minimum bias (right) elliptic flow by PHOBOS [85] and STAR [87],
respectively. STAR event plane data has been reduced by 20 percent to estimate the removal

of non-flow contributions [87, 88]. The line thickness for the hydrodynamic model curves is an
estimate of the accumulated numerical error (due to e.g. finite grid spacing). The integrated v2

coefficient from the hydrodynamic models (full lines) is well reproduced by 1
2ep (dots); indeed, the

difference between the full lines and dots gives an estimate of the systematic uncertainty of the
freeze-out prescription.

experimental data from STAR with the hydrodynamic model is shown in Fig. 8.
For Glauber-type initial conditions, the data on minimum-bias v2 for charged hadrons

is consistent with the hydrodynamic model for viscosities in the range η/s ∈ [0, 0.1], while
for the CGC case the respective range is η/s ∈ [0.08, 0.2]. It is interesting to note that
for Glauber-type initial conditions, experimental data for both the integrated as well as the
minimum-bias elliptic flow coefficient (corrected for non-flow effects) seem to be reproduced
best7 by a hydrodynamic model with η/s = 0.08 " 1

4π . This number has first appeared in the

7 In Ref. [22] a lower value of η/s for the Glauber model was reported. The results for viscous hydrodynamics
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HICs and Jet Quenching
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Fig. 14. Left: Nuclear modification factor, RAA, for light hadrons in central AuAu
collisions [58]. Data from [60]. Right: RAA for non-photonic electrons with the
corresponding uncertainty from the perturbative benchmark on the relative b/c
contribution [61]. Data from [62, 63]

In the massless case, the only parameters in the medium-induced gluon
radiation are the transport coefficient and the length of the traversed medium.
The later is given by the geometry of the system while the formed is a fitting
parameter – all the medium properties are encoded in q̂, so that measuring
it we will learn about the properties of the medium. Although the geometry
could, at first sight, seem a trivial feature in the calculation, different ge-
ometries lead to different values of the extracted properties of the medium.
In Fig. 14 the suppression computed with a static medium and medium
density given by a Wood-Saxon parametrization is presented. The fit to the
light meson suppression leads to quite large values of the transport coeffi-
cient [58, 59]

q̂ ! 5 . . . 15GeV2/fm (109)

but determined with a large uncertainty. This feature can be understood
as due to the dominance of surface emission: those particles produced close
to the surface have also large probability to exit the medium essentially
unaffected – see p0 in Fig. 13. In order to reproduce the large suppression
observed, the value of q̂ needs to be large, but at some point increasing this
value translates only into a small reduction of the skin from which the par-
ticles abandon the medium unaffected. It’s worth mentioning here that the
use of more sophisticated medium profiles, as given e.g. by hydrodynamical
simulations, could lead to slightly smaller results [65].

In the massive case, once the value of q̂ is known, the formalism pro-
vides a prediction with no extra free parameter. At present, the suppression
for charm or bottom mesons has not been directly measured. These quan-

Eskola et al.
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• Matter is very opaque to high energy probes.

• It is hard to accommodate this fact with perturbation theory.

• The coupling seems to be large (or, at least, not small)

• It is desirable  to find a strong coupling technique which 
allows to compare to perturbative calculations. (opposite 
limit)



Strong Coupling

This is not just a quantitative issue:
 there are qualitative differences at strong coupling!
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Quasiparticles

• Quasiparticles: long lived excitations (mean free path large 
with respect to interparticle distance and interaction range)
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small coupling
⇒

• The separation of scales happens only at small coupling!
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Quasiparticles

• Quasiparticles: long lived excitations (mean free path large 
with respect to interparticle distance and interaction range)
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FIG. 1: (a) The spectral density of the stress energy tensor, πρyxyx
ττ (ω)/ω normalized by the shear

viscosity, ηAdS = πN2T 3/8. (b) The spectral density of the current-current correlator, πρJJ/ω

normalized by χsD = N2T 2/16πT . In both cases the dashed curves show the zero temperature

results (Eq. (B16) and Eq. (B17)) normalized by the same factors. Due to a non-renormalization

theorem in these channels, the zero temperature spectral densities in the free and interacting

theories are equal [32, 33]. At finite temperature the kinetic theory peak does not exist in the

strongly interacting theory.

III. RESULTS

The spectral density of the stress energy tensor

ρyxyx
ττ (ω) =

1

2π

∫

∞

−∞

dt e+iωt

∫

d3x 〈[T yx(x, t), T yx(0, 0)]〉 , (3.1)

is shown in Fig. 1(a). Similarly the spectral density for the R-charge current-current corre-
lator

ρJJ(ω) =
1

2π

∫

∞

−∞

dt e+iωt

∫

d3x 〈[Jx
a (x, t), Jx

a (0, 0)]〉 (no a sum) , (3.2)

is shown in Fig. 1(b). These are normalized so that

πρyxyx
ττ (ω)

ω

∣

∣

∣

∣

ω=0

= η , and
πρJJ(ω)

ω

∣

∣

∣

∣

ω=0

= χsD, (3.3)

where η is the shear viscosity, χs is the static R-charge susceptibility, and D is the R-charge
diffusion coefficient.

The remarkable feature of these spectral functions is the absence of any distinction be-
tween the transport time scales and the continuum time scales. For comparison, consider the
spectral density of the stress energy tensor in the free theory as worked out in Appendix A.
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• The separation of scales happens only at small coupling!

• N=4 SYM at infinite coupling does not have quasiparticles 
(generic feature of strong coupling)
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• In this talk we will address another generic feature. 
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AdS/CFT

• The field theory lives at the boundary z=0
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• Finite temperature is introduced via a “black brane”.

• A concrete example is N=4 SYM with Ncߠ∞ and strong 
coupling λߠ∞. 

• Fundamental matter by D7 branes that end at a scale 1/m.

• Mesons are (quantized) vibrations of the membrane. They  
survive in the deconfined plasma (for small enough T).

• Heavy quarks correspond to classical strings that end on 
the brane
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Cherenkov Meson Radiation

• There is a maximum speed of propagation
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Prediction of a Photon Peak in Heavy Ion Collisions

Jorge Casalderrey-Solana1 and David Mateos2

1Nuclear Science Division, MS 70R319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

We show that if a flavour-less vector meson remains bound after deconfinement, and if its limiting
velocity in the quark-gluon plasma is subluminal, then this meson produces a distinct peak in the
spectrum of thermal photons emitted by the plasma. We also demonstrate that this effect is a
universal property of all strongly coupled, large-Nc plasmas with a gravity dual. For the J/Ψ the
corresponding peak lies between 3 and 5 GeV and could be observed in heavy-ion collisions at LHC.

1. Introduction. At a temperature Tc ! 170 MeV,
Quantum Chromodynamics (QCD) undergoes a rapid
cross-over into a deconfined phase called the quark-gluon
plasma (QGP). This new state of matter is being in-
tensively studied at the Relativistic Heavy Ion Collider
(RHIC) and will be studied in the future at the Large
Hadron Collider (LHC).

A remarkable conclusion from the RHIC experiments
is that the QGP does not behave as a weakly coupled
gas of quarks and gluons, but rather as a strongly cou-
pled fluid. This makes the study of the plasma a chal-
lenging task. Experimentally, it is difficult to find clean
probes with which to determine the properties of the
plasma, since any coloured probe will strongly interact
with the medium in a complicated manner; for this rea-
son, thermal photons emitted by the plasma are partic-
ularly interesting. The theoretical task of predicting the
properties of the QGP from first principles is also chal-
lenging. Since the plasma is strongly coupled, perturba-
tive methods are not applicable in general. The lattice
formulation of QCD is also of limited utility, since it is
not well suited for studying real-time phenomena such as
transport, photon production, etc. Thus one must either
make predictions based on very general expectations, or
resort to some other non-perturbative method such as
the gauge/gravity duality.

In this letter we will show that, under two plausible
assumptions about the properties of heavy vector mesons
in the QGP, a distinct peak in the spectrum of thermal
photons is predicted. Moreover, we will demonstrate that
this is a universal property of all strongly coupled, large-
Nc theories with a gravity dual. Finally, we discuss under
what conditions this effect could be observed at LHC.

2. Peaks in the photon spectrum. Sufficiently heavy
mesons (eg, J/ψ, Υ, etc.) may be expected to exhibit
two generic properties in the QGP. First, they may re-
main bound up to a dissociation temperature Tdiss > Tc.
Second, their limiting velocity in the plasma may be sub-
luminal.

The original argument [1] for the first expectation is
simply the fact that the heavier the meson, the smaller
its size. It is thus plausible to expect a meson to remain
bound until the screening length in the plasma becomes
comparable to the meson size, and for sufficiently heavy

ω/M̄

k/M̄

FIG. 1: Dispersion relation (blue curve) for a heavy meson
in the N = 4 SYM plasma at strong coupling [7]. The black
straight line corresponds to ω = k. M̄ is a reference mass
scale – see [7] for details.

mesons this happens at Tdiss > Tc. This conclusion is sup-
ported by calculations of both the static quark-antiquark
potential [2] and of Minkowski-space spectral functions in
lattice-regularized QCD [3].

The second expectation goes back to ref. [4], which
considered a weakly coupled plasma. More generally,
one may note [5] that a meson moving in the plasma
with velocity v experiences a boosted, higher energy
density, and hence also a higher effective temperature
Teff(v) = (1 − v2)−1/4T . Thus one may expect the exis-
tence of a subluminal limiting velocity for the meson [6],
determined by the condition Teff(vlim) ∼ Tdiss [5].

Although the two assumptions above are reasonable,
by no means they have been rigourously established in
QCD. Our purpose is not to discuss their plausibility in
detail but to exhibit an immediate consequence.

Consider the in-medium meson dispersion relation
ω(k), where ω and k are the energy and the spatial three-
momentum of the meson. M = ω(0) is the rest mass. As
k → ∞, the assumption of a subluminal limiting velocity
implies ω(k) ∼ vlimk, with vlim < 1. Fig. 1 shows the dis-
persion relation for a pseudoscalar meson in the strongly-
coupled, large-Nc, four-dimensional, N = 4 super-Yang-
Mills (SYM) plasma, calculated using its gravity dual
[7]; the dispersion relation for vector mesons is expected
to exhibit the same features. As noted in [8], continu-
ity now implies that the dispersion relation curve must
cross the light-cone, defined by ω = k, at some energy
ω = ωpeak. At this point the meson four-momentum is
null, and so the meson possesses the same quantum num-
bers as a photon [9]. Such a meson can then decay into

• If a probe couples to mesons, it will Cherenkov-radiate

7
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• The dispersion relation becomes space-like; this is the 
necessary condition for Cherenkov emission
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v

• Energy is fed into propagating mesons

• Additional energy loss mechanism to the drag-like 
dragging string 

• It has a non-trivial velocity dependence.



Dispersion Relations

• There is a maximum speed of propagation

50 Holographic thermal gauge theories with flavour
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Figure 2.10: Dispersion relation ω(q) for Minkowski D7-brane embeddings with (a) R0 =

1.20 (m = 1.32) and (b) R0 = 2.00 (m = 2.00) in a D3-brane background. The solid

blue line corresponds to δφ fluctuations, whereas the red dashed line corresponds to δR

fluctuations.

non-relativistic motion (small three-momenta), we expect that the dispersion relation takes

the form

ω(q) ! M0 +
q2

2Mkin
, (2.84)

where M0 = M0(T ) is the rest mass calculated above and Mkin = Mkin(T ) is the effective

kinetic mass for a moving meson. Although Mkin(T ) is not the same as M0(T ), for low

temperatures the difference between the two quantities is expected to be small. For ex-

ample, fitting the small-q̃ results for ω̃ for the lowest δR-mode at T/M̄ = 0.5 (or R0 = 2)

yields
ω

M̄
= 6.084 + 0.076

q2

M̄2
+ · · · . (2.85)

Hence in this case, we find M0/M̄ ! 6.084 and Mkin/M̄ ! 6.579. Recall that at T = 0,

we would have M0 = Mkin = Mgap = 2πM̄ ! 6.283M̄ and so both masses have shifted by

less than 5%. Note that while the rest mass has decreased, the kinetic mass has increased.

The latter is perhaps counter-intuitive as it indicates it is actually easier to set the meson

in motion through the plasma than in vacuum. From a gravity perspective, it is perhaps

less surprising as the Minkowski branes are bending towards the black hole horizon and so

these fluctuations experience a greater redshift than in the pure AdS5 × S5 background.

• It is determined by the speed of light at the tip of the 
deformed brane

• This is a universal feature for meson probes in any theory 
with a gravity dual with Nc→∞ 
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Phenomenological Consequences
• There are evidences that J/ψ survives deconfinement

• If J/ψ has a modified dispersion relation:

• Non trivial angular distribution of 
J/ψ associated to a high pT particle

• Raa has a non trivial 
velocity dependence.

dp

dt
= −ηDp (0.20)

ηD =
π
√

λT 3

2MT
(0.21)

c(r) = v (0.22)

κT =
√

λγπT 3 (0.23)

q̂SY M = 5.3
√

λT 3 (0.24)

q̂QCD ≈ 6− 12 GeV2/fm (0.25)

RAA =
Number of particles in A− A

Number of collision× Number of particles in p− p
(0.26)

〈T xy(x)T xy(0)〉 (0.27)

cos θc =
vp

vs
(0.28)

vp < 1 (0.29)

dN

dpT dφ
=

1

2π

dN

dpT
[1 + 2v2(pT ) cos (2φ) + . . .] (0.30)

θ ≈ π − 〈θc〉 (0.31)

3

Raa

ϒϒc

• Estimates on the magnitude of these effects are in 
progress (JCS, Fernandez, Mateos)



Conclusions
• It is important to understand generic features of strongly 

coupled gauge theory plasmas 

• All gauge theories with a gravity dual lead to a space like 
dispersion relation for mesons

• If QCD mesons survive deconfinement and have this 
dispersion relation there will be: 

11

• Non trivial angular distributions of (heavy) 
mesons associated to a high energy particle

• A velocity dependent component in the energy 
loss of probes with a threshold (v>vp). 
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Quarkonia in Hot QCD

• Lattice charmonium correlators show small modifications 
up to T=1.5  Tc

• J/ψ may survive the deconfinement transition. 

• The extraction of the dissociation temperature depends on 
models. There is an uncertainty on its value from different 
groups Tdiss=1.2 ÷ 2 Tc

• AdS/CFT allows to study dynamical meson properties on a 
strongly coupled environment

3

Above 1.1Tc the charmonium spectral functions show no
resonance-like structures, meaning that all charmonium
states are dissolved. Even though there are no reso-
nances, the spectral function is strongly enhanced com-
pared to the non-interacting case. This is also illustrated
in Fig. 2. We would like to point out, that this thresh-
old enhancement compensates for the dissociation of the
states, and thus dramatic changes seen in the spectral
function are not reflected in the correlation function (for
a detailed discussion see [12]). Also, the strong enhance-
ment in the threshold region is an indication that the
heavy quark and antiquark remain correlated. In the case
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FIG. 2: S-wave charmonium (upper panel) and bottomonium
(lower panel) spectral functions at different temperatures.

of bottomonium we see only the ground state above de-
confinement, all other states are dissolved. Furthermore,
as Fig. 2 shows, there is no significant change in the peak
position of the ground state up to 2Tc. Even though
seemingly the resonance structure persists to tempera-
tures even higher than this, the binding energy of the
state is significantly reduced.

When the binding energy of a resonance drops below
the temperature the state is weakly bound, and ther-
mal fluctuations can destroy it by transfering energy and
exciting the quark anti-quark pair into the continuum.
The rate of this excitation, or equivalently the width
of the quarkonium states, is determined by the bind-
ing energy [23]. Therefore, in order to provide an upper
bound on the dissociation temperature we need to esti-
mate an upper bound for the binding energy. To do this,
we calculate quarkonium spectral functions for the set 2
potential, providing the maximum possible binding still
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FIG. 3: An upper limit of the binding energy of different
quarkonium states (top) and the quarkonium width (bottom).
The open squares show the width of the 1S bottomonium
state multiplied by six for better visibility, which has been
calculated in the limit of small binding.

consistent with the lattice results on screening. We find
that with this choice of the potential the S-wave char-
monium spectral function has resonance-like structures
up to ∼ 1.6Tc. Furthermore, we also see resonance like
structures in the bottomonium spectral functions corre-
sponding to the 1P and 2S states. In the upper panel
of Fig. 3 we show the corresponding binding energies of
the different quarkonium states. Let us note, that in the
past quarkonium widths at finite temperature have been
calculated using perturbative QCD and the Boltzmann-
approximation, assuming an ideal quark-gluon plasma.
See [24] for a recent analysis. For quarkonium sizes re-
alized in nature the validity of the perturbative calcula-
tions of the quarkonium-gluon cross section is doubtful.
Furthermore, the Boltzmann-approximation breaks down
if the binding energy is smaller than the temperature.
In [23] the quarkonium dissociation rate due to thermal
activation into the continuum has been estimated non-
perturbatively, using a resonance plus a continuum model
for the spectral function. The thermal dissociation rate
Γ(T ) has a particularly simple form in two limits [23]:
The limit of large and small binding, respectively:

Γ(T ) = (LT )2

3π Me−Ebin/T , Ebin " T , (4)

Γ(T ) = 4
L

√

T
2πM , Ebin # T . (5)

Here L is the size of the spatial region of the potential,
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FIG. 8: The ratio G/Grecon for the pseudo-scalar channel on
coarse ξ = 2 lattices.

structed correlator

Grecon(τ, T ) =

∫ ∞

0
dωσ(ω, T = 0)K(τ, ω, T ). (35)

If the spectral function does not change with increas-
ing temperature we expect G(τ, T )/Grecon(τ, T ) = 1. In
this section we are going to study the temperature de-
pendence of this ratio for different channels at different
lattice spacings. To fix the temperature scale we use the
β dependence of the r0 given by Eq. 30 and the value
r0Tc = 0.7498(50) [50] for the transition temperature Tc.
The parameters of our finite temperature simulations are
given in Table III.

A. The pseudo-scalar correlators

First let us examine the temperature dependence of
the pseudo-scalar correlators. In Fig. 8 we show our
numerical results for G/Grecon on coarse lattices with
ξ = 2. The figure shows very little temperature depen-
dence of the correlators till temperatures 1.2Tc. Calcu-
lations at smaller lattice spacings enable us to consider
higher temperatures. In Fig. 9 we show the tempera-
ture dependence of G/Grecon on our ξ = 4 lattices. We
see very little change in the pseudo-scalar correlator till
temperatures as high as 1.5Tc. Medium modifications of
the correlator slowly turn on as we increase the tempera-
ture above this value. From the figures it is clear that the
temperature dependence of the correlators is not affected
significantly by the finite lattice spacing. The very small
temperature dependence of the pseudo-scalar correlator
suggests that the corresponding ground state ηc(1S) sur-
vives till temperatures as high a 1.5Tc. The temperature
dependence of the correlator found in this study is simi-
lar to that of Ref. [17] where isotropic lattices with very
small lattice spacings, a−1 = 4.86, 9.72 GeV have been
used. We find a somewhat stronger temperature depen-
dence of G/Grecon than in Ref. [17]. In particular, at
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FIG. 9: The ratio G/Grecon for the pseudo-scalar channel for
the two finer ξ = 4 lattices.

1.5Tc we see small, but statistically significant deviations
of G/Grecon from unity. At higher temperatures the de-
viation of G/Grecon from unity become slightly larger
than those found in Ref. [17]. This is possibly due to the
fact that cutoff effects are more important at higher tem-
peratures. Thus despite similarities of the temperature
dependence of the pseudo-scalar correlator to findings of
Ref. [17] we see quantitative differences. One should
note, however, statistical errors and systematic uncer-
tainties are larger in the analysis presented in Ref. [17]
than in this calculation. The ratio G/Grecon starts to
depend more strongly on the temperature around 2Tc.
This may suggest some quantitative differences in the
properties of the lowest state at this temperature.

B. The P-wave correlators

In this subsection we are going to discuss the temper-
ature dependence of the scalar, axial-vector and tensor
correlators corresponding to P-states. The numerical re-
sults for the scalar correlator on our ξ = 2 coarse lattices
are shown in Fig. 10. As one can see the correlator
is temperature independent below Tc and strongly en-
hanced above Tc. The magnitude of the enhancement
is largest on the coarsest lattice and decreases with de-
creasing lattice spacing. The numerical results on fine
lattices are shown in Fig. 11. We see some differences
in G/Grecon calculated at β = 6.1 and β = 6.5. Thus
the cutoff dependence of G/Grecon is larger in the scalar
channel than in the pseudo-scalar one. For β = 6.1 and
ξ = 4 we also did calculations on 243 × 24 lattice to
check finite volume effects. The corresponding results
are shown in Fig. 11 indicating that the finite volume ef-
fects are small. On the finest lattice the enhancement of
the scalar correlator is very similar to that found in cal-
culations done on isotropic lattices [17], but small quan-
titative differences can be identified.

In Figs. 12 and 13 we show the temperature depen-

model
⇒
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Mesons in AdS/CFT.  T≠0

z
Minkowski

m =
Mq√

λ
(0.1)

zm ∼ 1/m (0.2)

∼ 1/m (0.3)

1

z ∼ 1/T (0.1)

m =
Mq√

λ
(0.2)

zm ∼ 1/m (0.3)

∼ 1/m (0.4)

1

Black hole

z ∼ 1/T (0.1)

m =
Mq√

λ
(0.2)

zm ∼ 1/m (0.3)

∼ 1/m (0.4)

1

• If the temperature is smaller than meson 1/radius (mass) 
there mesons at finite T

• At higher T the mesons melt (the fluctuations fall in the 
BH)

• We can use it as a model for mesons in a deconfined 
plasma

• While bound, mesons remain infinitely narrow (1/Nc)



Photons from J/ψ3

of statistical recombination [22, 23], we assume that the
cc̄-pairs produced in the initial collisions between partons
become kinetically but not chemically equilibrated in the
QGP [24]; in particular, their total number, Ncc̄, stays
constant. To implement this condition we introduce a
fugacity factor [22, 23]

gc(T ) =
Ncc̄

2 · 3 · V (T )
(

McT
2π

)3/2
e−Mc/T

, (1)

where Mc = 1.7 GeV is the charm-quark mass. At
t = tdiss the temperature reaches the dissociation tem-
perature of the J/ψ in the medium, Tdiss. At this point
a fraction of the cc̄-pairs coalesce and recombine forming
J/ψ mesons [25]. Their contribution to the total number
of photons with frequency ω emitted by the plasma is
then

S(ω) ∝

∫ thadro

tdiss

dt V (t) gc(T (t))2 e−ω/T (t) χJ/ψ(ω, T (t)) ,

(2)
where the ‘S’ stands for ‘signal’. The overall normali-
sation is not important since it is the same as that for
the background of thermal photons emitted by the light
quarks, which is given by

B(ω) ∝

∫ thadro

0
dt V (t) e−ω/T (t) . (3)

We have omitted χlight(ω, T ) since, guided by the results
for plasmas with a gravity dual, we assume it is struc-
tureless.

We would like to compare the two contributions above.
Motivated by fig. 3, we expect the magnitude of χJ/ψ

around ωpeak to be comparable to that of χlight. We thus
model the spectral function for the J/ψ by a unit-area
Gaussian distribution of width Γ centred at ωpeak(T (t)).
For the width we choose Γ = 100 MeV, of the or-
der of the temperature and a thousand times larger
than the vacuum width. The temperature dependence
of ωpeak arises from that of the meson dispersion rela-
tion. On general grounds we expect this to take the
form ω(k) =

√

M2v4
lim + k2v2

lim + M(1 − v2
lim). The first

term is just the vacuum dispersion relation with the
speed of light replaced by vlim. The second term en-
sures that M is the rest mass of the meson. The me-
son dispersion relation in fig. 1 is very well approximated
by this ansatz. We neglect medium-induced changes in
the J/ψ mass and set M = 3 GeV. The above ansatz
yields ωpeak = M(1 + vlim/

√

1 − v2
lim). The limiting ve-

locity is determined by the condition (1 − v2
lim)1/4 =

T/Tdiss + [(1 − v2
0)

1/4 − 1]. The first term implements
the relationship between T and vlim that was heuristi-
cally motivated in sec. 2. The second term accounts for
the fact that the limiting velocity at Tdiss may be non-
zero, as is the case in plasmas with a gravity dual. We
choose v0 = 0.2.
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dNγ
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FIG. 5: Thermal photon spectrum for LHC energies and
Tdiss = 1.25Tc. The (arbitrary) normalisation is the same for
all curves. The continuous, monotonically decreasing, blue
curve is the background from light quarks. The continuous,
red curve is the signal from J/ψ mesons. The dashed, black
curve is the sum of the two.

We also need the number of primordial cc̄-pairs pro-
duced in the heavy ion collision. This is proportional to
the cc̄ cross-section in a pp-collision, which suffers from
large uncertainties. For LHC energies we use dσpp

cc̄ /dy =
1850 µb, which is within the plausible range [26]. With
this choice one has Ncc̄ # 60.

The results of numerically evaluating eqs. (2) and (3)
for LHC values of the parameters [27] and Tdiss = 1.25Tc

[28] are plotted in fig. 5. We see that there is an order-one
enhancement in the spectrum, associated to the decays
of J/ψ’s into on-shell photons. However, whether this
photon excess manifests itself as a peak, or only as an en-
hancement smoothly distributed over a broader range of
frequencies, depends sensitively on the dissociation tem-
perature. Perhaps surprisingly, the peak is less sharp for
higher values of Tdiss.

The signal is also quite sensitive to other parameters.
For example, increasing the width by a factor of two turns
the peak into an enhancement. Note also that S depends
quadratically on the cc̄ cross-section. Since at RHIC this
is believed to be ten times smaller than at LHC, the en-
hancement discussed above is presumably unobservable
at RHIC energies. Finally, we note that the signal is
exponentially sensitive to other parameters such as the
charm-quark mass, the maximum temperature T (0), etc.

These considerations show that a precise determina-
tion of the enhancement is not possible without a very
detailed understanding of the in-medium dynamics of the
J/ψ. On the other hand, they also illustrate that there
exists a reasonable range of parameters for which this ef-
fect yields an order-one enhancement, or even a peak, in
the spectrum of thermal photons produced by the QGP.
This thermal excess is concentrated at photon energies
roughly between 3 and 5 GeV. In this range the number
of thermal photons at LHC is expected to be comparable
or larger than that of pQCD photons produced in initial
partonic collisions [29]. Thus we expect the thermal ex-
cess above to be observable even in the presence of the
pQCD background.

We have examined the possibility of an analogous ef-
fect associated to the Υ meson. In this case ωpeak

>
∼ 10

• Uncertainties in in-medium J/ψ makes quantitative 
predictions hard...

Crossing at ωpeak≥ MJ/ψ

 ωpeak grows as T decreases 
vlim→1

• We expect and enhancement in the photon spectrum 
(even a peak) in the region of 3-4 GeV

• From the models in the market, we searched from a 
scenario in which a peak is observed at the LHC

(statistical hadronization with the largest possible c-c cross section)

• The magnitude depends a lot on the model

• The observation of the peak would signal the modified 
dispersion relation



Fixed T

• At a fixed temperature there is a peak in the photon 
spectrum

2

γMeson

FIG. 2: Decay of a vector meson into and on-shell photon.

an on-shell photon [10], as depicted in fig. 2. This pro-
cess contributes a resonance peak, at an energy ωpeak, to
the in-medium spectral function of two electromagnetic
currents, χµν(ω, k) ∼ 〈Jµ(ω, k)Jν(−ω,−k)〉, evaluated at
null-momentum ω = k. This in turn produces a peak in
the spectrum of thermal photons emitted by the plasma,
dNγ/dω ∼ e−ω/T χµ

µ(ω, T ). The width of this peak is
the width of the meson in the plasma. In fig. 3 we have
illustrated this effect for the N = 4 SYM plasma coupled
to one massless quark and one heavy quark. The results
are valid at strong coupling and large Nc, since they were
obtained by means of the gravity dual [8]. The spectral
function for the massless quark is structure-less, whereas
that for the heavy quark exhibits a resonance peak – see
[8] for further details.
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FIG. 3: Spectral functions for the N = 4 SYM plasma cou-
pled to a massless quark (top, red curve) and a heavy quark
(bottom, blue curve), at large Nc and strong coupling.

3. A universal property of plasmas with a gravity

dual. The gravity dual of QCD is presently unknown.
When studying strongly-coupled plasmas with a grav-
ity dual, it is therefore important to focus on properties
that apply to as broad a class of plasmas as possible,
since these may also apply to QCD. In this section we
will show that the two assumptions above about heavy
mesons in a QGP are true in all strongly coupled, large-
Nc plasmas with a gravity dual, because they follow from
two universal properties of the duality: The fact that the
deconfined phase is described by a background with a
black hole (BH) [11], and the fact that, in the large-Nc

limit, a finite number of flavours Nf is described by Nf

D-brane probes in this background [12].
In the presence of the black hole, there are two possible

phases for the D-branes, separated by a universal first-
order phase transition [13, 14]. Geometrically, these two
phases are distinguished by whether or not the D-brane
tension can compensate for the black hole gravitational
attraction (see fig. 4). In the first case the branes lie
completely outside the horizon in a ‘Minkowski embed-
ding’. In the second case they fall through the horizon
in a ‘BH embedding’. From the gauge theory viewpoint,

FIG. 4: Possible D-brane embeddings in a BH background.

this phase transition corresponds to the dissociation of
heavy mesons [13, 18]. In the Minkowski phase stable
mesons exist, and their spectrum is discrete and gapped.
The meson mass in this phase increases as the separation
between the branes and the black hole increases [19]. By
contrast, in the black hole phase no meson bound states
exist. Recalling that the radius of the black hole is pro-
portional to the plasma temperature, we see that if a me-
son is sufficiently heavy compared to the temperatrure,
then this meson remains bound in the plasma and is de-
scribed by a Minkowski brane.

The existence of a subluminal limiting velocity for
mesons is obvious from the geometric picture above: It
is just the local speed of light at the tip of the branes
[7]. Indeed, the wave function of a meson is supported
on the D-branes. The larger the energy of the meson,
the more it is attracted by the black hole and the more
its wave-function is concentrated at the tip of the branes
(see fig. 4). In the limit k → ∞ the velocity of this me-
son approaches the local speed of light at the tip of the
branes. Because of the redshift caused by the BH, this
limiting velocity is lower than the speed of light at the
boundary, where the gauge theory resides. In the gauge
theory this translates into the statement that vlim is lower
than the speed of light in the vacuum [7]. This effect is
clearly illustrated in fig. 1.
4. Heavy Ion Collisions. Our analysis so far applies
to an infinitely-extended plasma at constant tempera-
ture. A crucial question is whether a peak in the photon
spectrum could be observed in a heavy ion collision ex-
periment. Natural heavy vector mesons to consider are
the J/ψ and the Υ, since these are expected to survive
deconfinement. We wish to compare the number of pho-
tons coming from these mesons to the number of pho-
tons coming from other sources. Accurately calculating
the meson contribution would require a precise theoret-
ical understanding of the dynamics of these mesons in
the QGP, which at present is not available. Our goal will
therefore be to estimate the order of magnitude of this
effect with a simple model.

Following [21], we model the fireball as an expanding
cylinder with volume V (t) = π(z0+vzt)(r0+a⊥t2/2)2 (we
choose tthermalisation = 0). This leads to the temperature
evolution T (t) = T (0)[V (0)/V (t)]1/3. At t = thadro the
temperature reaches Tc and the system hadronises.

Let us first consider the J/ψ contribution. In the spirit

• The enhancement is a consequence of the modified 
dispersion relation.

• This feature must be there for all models with gravity 
duals! 18

• The magnitude (in this model) is comparable with the 
(strongly coupled) light quark thermal emission. 



Strong Coupling
• Several experimental measurements (flow, quenching, 

HQ v2 )are hard to understand with perturbative 
techniques.

• The achieved temperatures T≤600 MeV are comparable 
to ΛQCD.  The coupling is not small (μD~T)

• It is desirable  to find a strong coupling technique which 
allows to compare to perturbative calculations. (opposite 
limit)

This is not just a quantitative issue:
 there are qualitative differences at strong coupling!

19


