Electroweak (and QCD) corrections at the LHC

Stefano Pozzorini CERN

CERN-TH Retreat 2009
Les Houches, November 4-6

NLO QCD calculations for the LHC: Les Houches priority list

Six-particle processes of priority list (2005/2007 Les Houches workshops)

$$
\mathrm{pp} \rightarrow \quad \mathrm{t} \overline{\mathrm{t} b} \overline{\mathrm{~b}}, \quad \mathrm{t} \overline{\mathrm{t}} j j, \quad V V \mathrm{~b} \overline{\mathrm{~b}}, \quad V V j j, \quad V j j j, \quad \mathrm{~b} \overline{\mathrm{~b}} \mathrm{~b} \overline{\mathrm{~b}}
$$

Importance of NLO QCD for the LHC

- heavy SM particles + jets \Rightarrow large backgrounds to many Higgs and BSM signals
- large powers of $\alpha_{\mathrm{S}} \Rightarrow$ huge QCD scale uncertainties at LO

Technical challenges

- computer codes slower than sec/point \Rightarrow CPU-months for precise distributions
- spurious singularities (Gram determinants) \Rightarrow serious numerical instabilities

The optimal NLO method(s) for $n=6,7$ particle processes at the LHC?

- Feynman diagrams and tensor reduction: very successful up to $n=5$ but complexity increases faster than factorially for $n \gg 1$
- Methods of on-shell type: less practical experience but complexity increases only polynomially for $n \gg 1$

Completion of the first $2 \rightarrow 4$ calculations of the priority list

Within the last few months-four years after Les Houches wish list-four groups, using different methods, have completed two wish-list processes

- Two calculations for $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ with permille agreement
- arXiv:0905.0110 by Bredenstein, Denner, Dittmaier and S. P. based on Feynman diagrams and tensor integrals
- arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau and Worek based on OPP reduction and HELAC
- Two calculations for $\mathrm{pp} \rightarrow \mathrm{W} j j j$ (leading-colour and full results)
- arXiv:0906.1445 by Ellis, Melnikov and Zanderighi based on D-dimensional unitarity (leading-colour approximation)
- arXiv:0907.1984 by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower and Maitre based on generalized unitarity (full colour)

Phenomenological motivation for t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$: irreducible background to $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}(\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}})$

Associated $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}(\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}})$ production at LHC

- for $M_{\mathrm{H}}<135 \mathrm{GeV}$: exploit large $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}} \mathrm{BR}$ and measure top Yukawa coupling
- 5σ discovery potential of ATLAS TDR disappeared because of background

Statistics and systematics $\left(30 \mathrm{fb}^{-1}\right)$

- $S / \sqrt{B} \simeq 2$ sufficient for measurement
- $S / B \simeq 0.1$ implies that $\Delta B / B$ systematic uncertainty of $\mathcal{O}(10 \%)$ kills measurement!

Main backgrounds (ATLAS analysis)

- t̄̄b̄̄ (AcerMC, $\left.\mu_{\mathrm{QCD}}=m_{\mathrm{t}}+m_{\overline{\mathrm{b}}} / 2\right)$
- $\mathrm{t} \overline{\mathrm{t} j \mathrm{j}}$ (MC@NLO, $\mu_{\mathrm{QCD}}^{2}=m_{\mathrm{t}}^{2}+\left\langle p_{\mathrm{T}, \mathrm{t}}^{2}\right\rangle$)

ATLAS CSC-note, CERN-OPEN-2008-020

$$
\text { Partonic subprocesses and loop diagrams for } \mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{~b} \overline{\mathrm{~b}}+X
$$

Sample one-loop diagrams in the $q \bar{q}$ (188) and gg (1008) channels

Tensor integrals $T_{i_{1} \ldots i_{P}}^{(N)}$ are reduced numerically. Their coefficients $\Gamma_{\mu_{1} \ldots \mu_{P}}\{g \ldots p\}_{i_{1} \ldots i_{P}}^{\mu_{1} \ldots \mu_{P}}$ undergo heavy algebraic manipulations

Automatic tools for algebraic manipulation and numerics

- Code size (Bible $\sim 4 \mathrm{MB}$): one Hexagons $\sim 1 \mathrm{MB}$, full executable $\sim 100 \mathrm{MB}$
- FeynArts and FormCalc plus in-house MATHEMATICA and Fortran77 programs
- Code development took about two years but its highly process-independent character renders it applicable to many other processes

LO and NLO scale dependence of $\sigma_{\text {tot }}$ at the LHC

Very high sensitivity to scale choice

- LO proportional to $\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}\right)^{4} \Rightarrow 78 \%$ uncertainty

ATLAS scale choice: $\mu_{0}=m_{\mathrm{t}}+m_{\mathrm{b} \overline{\mathrm{b}}} / 2=E_{\mathrm{thr}} / 2$

- motivated by small NLO effects observed in similar processes: $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}(K \simeq 1.2), \mathrm{t} \overline{\mathrm{t}} j(K \simeq 1.1), \mathrm{t} \overline{\mathrm{t}}(K \simeq 1.35)$
- but for $\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ we found very large NLO corrections ($K \simeq 1.8 \pm 34 \%$)

ATLAS scale is wrong and must be replaced by new (dynamical) QCD scale: $\mu_{0}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{b}} p_{\mathrm{T}, \overline{\mathrm{b}}}}$

- combines typical scales observed in t牙 \bar{b} distributions
- reduces correction and uncertainty ($K=1.25 \pm 21 \%$)
- increases $\sigma_{\text {tot }}$ by factor two wrt ATLAS simulations!

Statistical precision and speed of the calculation

Single 3GHz Intel Xeon processor \& pgf77 Portland compiler

	$\sigma / \sigma_{\text {LO }}$	\# events (after cuts)	$(\Delta \sigma)_{\text {stat }} / \sigma$	runtime	time $/$ event
NLOtree (gg)	85%	5.8×10^{6}	0.4×10^{-3}	2 h	$<1.4 \mathrm{~ms}$
virtual (gg)	10%	0.46×10^{6}	0.7×10^{-3}	20 h	160 ms
real $+\operatorname{dipoles}(\mathrm{gg} / \mathrm{qg})$	87%	16.5×10^{6}	2.6×10^{-3}	47 h	10 ms

- 2-3 CPU-days $\Rightarrow \mathcal{O}\left(10^{7}\right)$ events and $\mathcal{O}\left(10^{-3}\right)$ stat. accuracy for $\sigma_{\text {tot }}$ (distributions obtained with $\sim 5 \times 10^{8}$ events after cuts)
- speed of virtual corrections is remarkably high: $160 \mathrm{~ms} /$ event (including colour and polarization sums!)
- this is based on completely process-independent techniques and opens excellent perspectives to study many other multi-particle processes at the LHC!

Electroweak loop corrections at the TeV scale

Example: electroweak corrections to $\mathrm{pp} \rightarrow \mathrm{W}+$ jet at the LHC

$$
\left(\sigma^{\mathrm{NLO}}-\sigma^{\mathrm{LO}}\right) / \sigma^{\mathrm{LO}}
$$

Kühn, Kulesza, S.P., Schulze (2007)

At small p_{T}

- Corrections of $\mathcal{O}(\alpha) \sim 1 \%$

At $p_{T}>100 \mathrm{GeV}$

- large negative corrections $\gg 1 \%$
- increase with p_{T}
- $30-40 \%$ at $p_{T} \sim 1-2 \mathrm{TeV}$!

Questions

- origin?
- large effects beyond one-loop?

Origin: scattering energy \gg characteristic scale of EW corrections

Large double logarithms

$$
\frac{\delta \sigma}{\sigma} \sim-\frac{\alpha}{\pi s_{\mathrm{w}}^{2}} \ln ^{2}\left(\frac{s}{M_{W, Z}^{2}}\right) \simeq-26 \% \quad \text { at } \quad \sqrt{s} \sim 1 \mathrm{TeV}
$$

from vertex and box diagrams involving virtual W and Z bosons

Kuroda, Moultaka, Schildknecht (1991); Degrassi, Sirlin (1992); Beenakker, Denner, Dittmaier, Mertig, Sack (1993); Denner, Dittmaier, Schuster (1995); Denner, Dittmaier, Hahn (1997), Beccaria, Montagna, Piccinini, Renard, Verzegnassi (1998); Ciafaloni, Comelli (1999)

Affect all hard scattering processes at LHC, ILC, CLIC!

Asymptotic expansion of 1-loop EW corrections

General form of $M_{W}^{2} / s \rightarrow 0$ asymptotic limit

$$
\alpha[C_{2} \underbrace{\ln ^{2}\left(\frac{s}{M_{W}^{2}}\right)}_{\text {soft,coll }}+C_{1} \underbrace{\ln \left(\frac{s}{M_{W}^{2}}\right)}_{\text {soft,coll }}+\tilde{C}_{1} \underbrace{\ln \left(\frac{s}{\mu_{\mathrm{R}}^{2}}\right)}_{\mathrm{UV}}+C_{0}+\mathcal{O}\left(\frac{M_{W}^{2}}{s}\right)]
$$

Origin of large logarithms

- Remnants of UV singularities can be absorbed into running couplings
- Mass singularities from soft/collinear gauge bosons coupling to external lines

Analogies with QED and QCD? Factorization and universality?

Factorization and universality of one-loop EW logarithms [Denner, s.P. (2001)]

For arbitrary processes $\left(e, \nu, u, d, t, b, \gamma, Z, W^{ \pm}, H, g\right)$

proven with collinear Ward identities for spontaneously broken YM theories

$$
\begin{aligned}
\left\{\begin{array}{l}
W, Z, \gamma \\
i
\end{array}\right. & \frac{\alpha}{4 \pi}\left\{\sum_{V=\gamma, Z, W} I_{i}^{V} I_{j}^{V} \ln ^{2} \frac{r_{i j}}{M_{W}^{2}}+2 I_{i}^{Z} I_{j}^{Z} \ln \frac{r_{i j}}{M_{W}^{2}} \ln \frac{M_{W}^{2}}{M_{Z}^{2}}+\gamma_{i j}^{\mathrm{ew}} \ln \frac{s}{M_{W}^{2}}\right. \\
& \left.+Q_{i} Q_{j} \sum_{k=i, j}\left[\ln \frac{r_{i j}}{m_{k}^{2}} \ln \frac{M_{W}^{2}}{\lambda^{2}}-\frac{1}{2} \ln ^{2} \frac{M_{W}^{2}}{m_{k}^{2}}-\ln \frac{M_{W}^{2}}{\lambda^{2}}-\frac{1}{2} \ln \frac{M_{W}^{2}}{m_{k}^{2}}\right]\right\}
\end{aligned}
$$

Simple and general recipe for LL and NLL at one loop ...
maybe too simple?!

Precision of NLL/NNLL approx. for $\mathrm{pp} \rightarrow \mathrm{Zj} \quad$ [Kühn, Kulesza, S.P., Schulze (2005)]

Asymptotic expansion $\left(|\hat{s}|,|\hat{t}|,|\hat{u}| \gg M_{W}^{2}\right)$ for $q \bar{q} \rightarrow Z g$ amplitude

$$
\begin{aligned}
& \left.+\ln ^{2}\left(\frac{\hat{u}}{s}\right)+\ln \left(\frac{\hat{t}}{s}\right)+\ln \left(\frac{\hat{u}}{s}\right)+\frac{7 \pi^{2}}{3}-\frac{5}{2}\right]\left(\frac{\hat{t}^{2}+\hat{u}^{2}}{t \hat{u}}\right)+\frac{1}{2}\left[3 \ln \left(\frac{\hat{u}}{s}\right)-3 \ln \left(\frac{\hat{t}}{s}\right)-\ln ^{2}\left(\frac{\hat{u}}{s}\right)+\ln ^{2}\left(\frac{\hat{t}}{s}\right)\right] \\
& \left.\times\left(\frac{\hat{\mathrm{t}}^{2}-\hat{u}^{2}}{\hat{t} \hat{u}}\right)+2\left[\ln ^{2}\left(\frac{\hat{t}}{s}\right)+\ln ^{2}\left(\frac{\hat{u}}{s}\right)+\ln \left(\frac{\hat{f}}{s}\right)+\ln \left(\frac{\hat{u}}{s}\right)+2 \pi^{2}\right]\right\}+\frac{c_{\mathrm{W}}}{s_{\mathrm{W}}^{3}} T_{q_{\lambda}}^{3} I_{q_{\lambda}}^{Z}\left\{\left[\frac{4}{4-D}-2 \gamma_{\mathrm{E}}\right.\right. \\
& +2 \ln \left(\frac{4 \pi \mu^{2}}{M_{Z}^{2}}\right)+\ln ^{2}\left(\frac{-\hat{s}}{M_{W}^{2}}\right)-\ln ^{2}\left(\frac{-\hat{t}}{M_{W}^{2}}\right)-\ln ^{2}\left(\frac{-\hat{u}}{M_{W}^{2}}\right)+\ln ^{2}\left(\frac{\hat{t}}{\hat{u}}\right)-\frac{3}{2}\left[\ln ^{2}\left(\frac{\hat{f}}{s}\right)+\ln ^{2}\left(\frac{\hat{u}}{s}\right)\right]-\frac{20 \pi^{2}}{9}-\frac{\pi}{\sqrt{3}} \\
& \left.\left.+2]\left(\frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{t} u}\right)+\frac{1}{2}\left[\ln ^{2}\left(\frac{\hat{u}}{s}\right)-\ln ^{2}\left(\frac{\hat{f}}{s}\right)\right]\left(\frac{\hat{t}^{2}-\hat{u}^{2}}{\hat{t}}\right)-2\left[\ln ^{2}\left(\frac{\hat{t}}{s}\right)+\ln ^{2}\left(\frac{\hat{u}}{s}\right)+\ln \left(\frac{\hat{t}}{s}\right)+\ln \left(\frac{\hat{u}}{s}\right)+2 \pi^{2}\right]\right\}\right\}
\end{aligned}
$$

Very compact expressions

- NLL predicted by process-independent formula [Denner, S.P. (2001)]
- NNLL consist of $\pi^{2}, \pi / \sqrt{3}, \ln (\hat{t} / \hat{u}), \ldots$ not growing with energy

NLL/NNLL approximations vs exact calculation

Large negative corrections

- -25% at $p_{\mathrm{T}} \sim 1 \mathrm{TeV}$
- NLO, NLL, NNLL overlap!

Precision of NNLL approximation

- better than 0.2%

Precision of NLL approximation

- better than 1% ! (process-dependent)

[^0]
Two-loop LL and NLL corrections for $\mathbf{p p} \rightarrow \mathbf{W} \mathbf{j}$ [Kühn, Kulesza,S.P., Schulze (2007)]

Compact formula for partonic scattering amplitudes $\left(\bar{q} q^{\prime} \rightarrow W g\right)$

$$
\begin{aligned}
& \bar{\sum}\left|\mathcal{M}_{2}\right|^{2}=4 \frac{\alpha^{3} \alpha_{\mathrm{S}}}{s_{\mathrm{W}}^{2}} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{t} \hat{u}}\left\{(C _ { q _ { \mathrm { L } } } ^ { \mathrm { ew } } + \frac { C _ { A } } { 2 s _ { \mathrm { W } } ^ { 2 } }) \left[\frac{C_{A}}{2 s_{\mathrm{W}}^{2}}\left(\ln ^{4}\left(\frac{\hat{t}}{M_{W}^{2}}\right)+\ln ^{4}\left(\frac{\hat{u}}{M_{W}^{2}}\right)-\ln ^{4}\left(\frac{\hat{s}}{M_{W}^{2}}\right)\right)\right.\right. \\
& \left.\left.+C_{q_{\mathrm{L}}}^{\mathrm{ew}}\left(\ln ^{4}\left(\frac{\hat{s}}{M_{W}^{2}}\right)-6 \ln ^{3}\left(\frac{\hat{s}}{M_{W}^{2}}\right)\right)\right]+\frac{1}{3}\left[\frac{b_{1}}{c_{\mathrm{W}}^{2}}\left(\frac{Y_{q_{\mathrm{L}}}}{2}\right)^{2}+\frac{b_{2}}{s_{\mathrm{W}}^{2}}\left(C_{F}+\frac{C_{A}}{2}\right)\right] \ln ^{3}\left(\frac{\hat{s}}{M_{W}^{2}}\right)\right\}
\end{aligned}
$$

Size of one-loop and two-loop corrections

- $-27 \%+3 \%=-24 \%$ at $p_{\mathrm{T}} \sim 1 \mathrm{TeV}$
- $-42 \%+9 \%=-33 \%$ at $p_{\mathrm{T}} \sim 2 \mathrm{TeV}$

Two-loop $\simeq \mathbf{1 - 2} \sigma_{\text {stat }}$!

Factorization and Exponentiation of IR logarithms: QCD vs EW

Logarithmic dependence of QCD scattering amplitudes on IR cut-off

$$
\frac{\partial \mathcal{M}}{\partial \ln \left(\mu_{\mathrm{T}}\right)}=K\left(\mu_{\mathrm{T}}\right) \mathcal{M} \quad \Rightarrow \quad \mathcal{M}\left(\mu_{\mathrm{T}}\right)=\exp \left[-\int_{\mu_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} \mu}{\mu} K(\mu)\right] \mathcal{M}(Q)
$$

Powerful formalism to describe higher-order logarithms in QCD: can be used to derive higher-order EW logarithms?

How to deal with mass gap in the electroweak gauge sector?

$$
\mathrm{SU}(2) \times \mathrm{U}(1) \text { regime: } \mu_{\mathrm{T}}>M_{\mathrm{W}, \mathrm{Z}}
$$

mass gap irrelevant ($\left.M_{\gamma}=M_{\mathrm{Z}}=M_{\mathrm{W}}\right)$

$$
\frac{\partial \mathcal{M}}{\partial \ln \left(\mu_{\mathrm{T}}\right)}=K_{\mathrm{EW}}\left(\mu_{\mathrm{T}}\right) \mathcal{M}
$$

as in symmetric $\mathrm{SU}(2) \times \mathrm{U}(1)$ theory

$$
\mathrm{U}(1)_{\mathrm{em}} \text { regime: } \mu_{\mathrm{T}}<M_{\mathrm{W}, \mathrm{Z}}
$$

weak boson frozen $\left(M_{\mathrm{Z}}, M_{\mathrm{W}}=\infty\right)$

$$
\frac{\partial \mathcal{M}}{\partial \ln \left(\mu_{\mathrm{T}}\right)}=K_{\mathrm{QED}}\left(\mu_{\mathrm{T}}\right) \mathcal{M}
$$

as in QED

Prediction: double factorization and exponentiation

$$
\mathcal{M}\left(\mu_{\mathrm{T}}\right)=\exp \left\{-\int_{\mu_{\mathrm{T}}}^{M_{\mathrm{W}}} \frac{\mathrm{~d} \mu}{\mu} K_{\mathrm{QED}}(\mu)\right\} \exp \left\{-\int_{M_{\mathrm{W}}}^{\sqrt{s}} \frac{\mathrm{~d} \mu}{\mu} K_{\mathrm{EW}}(\mu)\right\} \mathcal{M}_{\text {Born }}
$$

> Two-loop calculations based on EW Feynman rules

QCD-inspired resummations rely on strong theoretical assumptions

- EWSB completely neglected! (apart from two-regime splitting)

Can be checked against explicit 2-loop calculations

- select relevant loop diagrams generated from SB EW Lagrangian
- extract logarithms arizing in IR and UV regions

The (few) existing results agree with the QCD-inspired resummations

(A) Factorizable two-loop diagrams

Soft/collinear gauge bosons and Higgs/Goldstone bosons coupling only to ext. lines

Factorization and explicit calculation using sector decomposition [Denner, S.P. (2004)] $\Rightarrow L=\ln \left(Q^{2} / M^{2}\right) \gg 1$ and poles in $D=4-2 \epsilon$ from massless γ and fermions

(B) Cancellation of non-factorizable two-loop diagrams

Collinear gauge bosons coupling to external and internal lines

Collinear Ward identities for SB non-abelian theories [Denner, Jantzen, S.P. $(2001,2006)$]

$$
\begin{aligned}
& \ldots=\mu_{0}^{4 \epsilon} \int \frac{\mathrm{~d}^{D} q_{1}}{(2 \pi)^{D}} \int \frac{\mathrm{~d}^{D} q_{2}}{(2 \pi)^{D}} \frac{4 \mathrm{i}^{2} g_{2} \varepsilon^{V_{1} V_{2} V_{3}}}{\left(q_{1}^{2}-M_{V_{1}}^{2}\right)\left(q_{2}^{2}-M_{V_{2}}^{2}\right)\left(q_{3}^{2}-M_{V_{3}}^{2}\right)\left(p_{i}-q_{2}\right)^{2}\left(p_{j}-q_{1}\right)^{2}} \\
& \times \lim _{q_{1}^{\mu} \rightarrow 0} \lim _{q_{2}^{\mu} \rightarrow x p_{i}^{\mu}}\left(p_{i}-q_{2}\right)^{\mu_{2}}\left(p_{j}-q_{1}\right)^{\mu_{1}}\left[g_{\mu_{1} \mu_{2}}\left(q_{1}-q_{2}\right)^{\mu_{3}}+g_{\mu_{2}}^{\mu_{3}}\left(q_{2}+q_{3}\right)_{\mu_{1}}-g_{\mu_{1}}^{\mu_{3}}\left(q_{3}+q_{1}\right) \mu_{\mu_{2}}\right] \\
& \times \sum_{\varphi_{i}^{\prime}, \varphi_{j}^{\prime}}\left\{G G_{\mu_{3}}^{\left[\bar{V}_{3}\right.} \underline{\varphi}_{i}^{\prime}\right] \\
& \left(q_{3}, p_{i}-q_{2}\right) u\left(p_{i}, \kappa_{i}\right)+\frac{2\left(p_{j}+q_{2}\right)_{\mu_{3}}}{\left(p_{j}+q_{2}\right)^{2}} \sum_{\varphi_{j}^{\prime \prime}} e I_{\varphi_{j}^{\prime \prime} \varphi_{j}^{\prime}}^{\bar{V}_{3}} \mathcal{M}_{0}^{\varphi_{1} \ldots \varphi_{i}^{\prime} \ldots \varphi_{j}^{\prime \prime} \ldots \varphi_{n}} \\
& \left.+\sum_{\substack{k=1 \\
k \neq i, j}}^{n} \frac{2\left(p_{k}+q_{3}\right)_{\mu_{3}}}{\left(p_{k}+q_{3}\right)^{2}} \sum_{\varphi_{k}^{\prime}} \mathcal{M}_{0}^{\varphi_{1} \ldots \varphi_{i}^{\prime} \ldots \varphi_{j}^{\prime} \ldots \varphi_{k}^{\prime} \cdots \varphi_{n}} e I_{\varphi_{k}^{\prime} \varphi_{k}}^{\bar{V}_{3}}\right\} I_{\varphi_{j}^{\prime} \varphi_{j}}^{\bar{V}_{1}} I_{\varphi_{i}^{\prime} \varphi_{i}}^{\bar{V}_{2}}=0
\end{aligned}
$$

This cancellation mechanism permits process-independent treatment

Two-loop NLL result for $f_{1} f_{2} \rightarrow f_{3} \ldots f_{n}$

$\mathcal{O}(100)$ inequivalent two-loop diagrams \Rightarrow very simple result!

- Two-loop $\equiv \exp (1-\mathrm{loop}) \times$ Born
- Confirms structure predicted by QCD-inspired resummations

Two-loop NLL result for $f_{1} f_{2} \rightarrow f_{3} \ldots f_{n}$

$+$

contains only $L=\ln \left(s / M_{W}^{2}\right)$ and behaves as in a symmetric $\mathbf{S U (2) x U (1)}$ theory with $M_{W}=M_{Z}=M_{\gamma}$

Two-loop NLL result for $f_{1} f_{2} \rightarrow f_{3} \ldots f_{n}$

$+$

photonic $1 / \epsilon$ singularities
factorize and behave as in QED

Two-loop NLL result for $f_{1} f_{2} \rightarrow f_{3} \ldots f_{n}$

Two-loop NLL result for $f_{1} f_{2} \rightarrow f_{3} \ldots f_{n}$

- these results applicable to $q \bar{q} \rightarrow \mu^{+} \mu^{-}, u \bar{d} \rightarrow t \bar{b}, g g \rightarrow b \bar{b}, \ldots$
- our tools permit to extend this analysis to processes with γ, W, Z, H
- will start to play a (small) role only at $100 \mathrm{fb}^{-1}$ or higher integ. luminosities

[^0]: \Rightarrow use asymptotic expansions for two-loop EW corrections at high energies

