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NLO QCD calculations for the LHC: Les Houches priority list

Six-particle processes of priority list (2005/2007 Les Houches workshops)
pp —  ttbb, tt57, VVbb, VVij, Viig, bbbb
Importance of NLO QCD for the LHC

e heavy SM particles 4+ jets = large backgrounds to many Higgs and BSM signals

e large powers of ag = huge QCD scale uncertainties at LO

Technical challenges
e computer codes slower than sec/point = CPU-months for precise distributions

e spurious singularities (Gram determinants) = serious numerical instabilities

The optimal NLO method(s) for n = 6,7 particle processes at the LHC?

e Feynman diagrams and tensor reduction: very successful up to n = 5 but

complexity increases faster than factorially for n > 1

e Methods of on-shell type: less practical experience but complexity increases

only polynomially for n > 1



Completion of the first 2 — 4 calculations of the priority list

Within the last few months—four years after Les Houches wish list—four groups,

using different methods, have completed two wish-list processes

e Two calculations for pp — ttbb with permille agreement

— arXiv:0905.0110 by Bredenstein, Denner, Dittmaier and S. P.

based on Feynman diagrams and tensor integrals

— arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau and Worek
based on OPP reduction and HELAC

e Two calculations for pp — Wjj;j (leading-colour and full results)

— arXiv:0906.1445 by Ellis, Melnikov and Zanderighi

based on D-dimensional unitarity (leading-colour approximation)

— arXiv:0907.1984 by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg,

[ta, Kosower and Maitre based on generalized unitarity (full colour)



Phenomenological motivation for ttbb: irreducible background to ttH(H — bb)

Associated ttH(H — bb) production at LHC
o for My < 135GeV: exploit large H — bb BR

and measure top Yukawa coupling

e Ho discovery potential of ATLAS TDR

disappeared because of background

Statistics and systematics (30 fb™ ')
e S/\/B ~ 2 sufficient for measurement
e S/B ~ 0.1 implies that AB/B systematic

uncertainty of O(10%) kills measurement!

Cross-section [fb/30GeV]

Main backgrounds (ATLAS analysis)
o ttbb (AcerMC, puqcp = mi + mg,/2)
o ttjj (MCONLO, udcp = mi+ < pry >)

require NLO predictions!

ATLAS
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Partonic subprocesses and loop diagrams for pp — ttbb + X

Sample one-loop diagrams in the qq (188) and gg (1008) channels

24 pentagons 8 hexagons 114 pentagons 40 hexagons

Tensor integrals Ti(ﬁ). are reduced numerically. Their coefficients
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Automatic tools for algebraic manipulation and numerics
e Code size (Bible ~ 4 MB): one Hexagons ~ 1 MB, full executable ~ 100 MB
e FeynArts and FormCalc plus in-house MATHEMATICA and Fortran77 programs

e Code development took about two years but its highly process-independent

character renders it applicable to many other processes
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o [fb] pp — ttbb + X
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ATLAS scale choice: o = m + myi/2 = Eine /2

e motivated by small NLO effects observed in similar
processes: ttH (K ~ 1.2), ttj (K ~ 1.1), ttZ (K ~ 1.35)

3
e but for ttbb we found very large NLO corrections

o [fb] pp — ttbb + X (K ~ 1.8+ 34%)
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0 e increases oot by factor two wrt ATLAS simulations!

0.125 0.25 0.5 1 2 4 8



Statistical precision and speed of the calculation

Single 3GHz Intel Xeon processor & pgf77 Portland compiler

o/0L0 # events (after cuts) (Ao )stat /0o runtime time/event
NLOtree (gg) 85% 5.8 x 109 0.4 x 103 2h < 1.4ms
virtual (gg) 10% 0.46 x 106 0.7 x 1073 20h 160ms
real + dipoles (gg/qg) 87% 16.5 x 10° 2.6 x 1073 47h 10ms

¢ 2-3 CPU-days = O(107) events and O(10~°) stat. accuracy for oot

(distributions obtained with ~ 5 x 10® events after cuts)

e speed of virtual corrections is remarkably high: 160 ms/event

(including colour and polarization sums!)

e this is based on completely process-independent techniques and opens

excellent perspectives to study many other multi-particle processes at the LHC!



Electroweak loop corrections at the TeV scale
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Example: electroweak corrections to pp — W + jet at the LHC
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Kiithn, Kulesza, S.P., Schulze (2007)
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At small pr
e Corrections of O(a) ~ 1%

At pr > 100 GeV
e large negative corrections > 1%

e increase with pr

e 30-40% at pr ~ 1-2 TeV!

Questions
e origin?

e large effects beyond one-loop?



Origin: scattering energy > characteristic scale of EW corrections

Large double logarithms

o0 O; 1112( > )2—26% at /s~ 1TeV

2
o TSy My, 4

from vertex and box diagrams involving virtual W and Z bosons

A
Z
W W
Kuroda, Moultaka, Schildknecht (1991); Degrassi, Sirlin (1992); Beenakker, Denner, Dittmaier, Mertig, Sack

(1993); Denner , Dittmaier, Schuster (1995); Denner, Dittmaier, Hahn (1997), Beccaria, Montagna, Piccinini,

Renard, Verzegnassi (1998); Ciafaloni, Comelli (1999)

Affect all hard scattering processes at LHC, ILC, CLIC!



Asymptotic expansion of 1-loop EW corrections

General form of M7, /s — 0 asymptotic limit

M2
a021n2< > >+01 ln( > >+01 1n<i> +Co+(’)< W)

Ve N/~ Ve

soft,coll soft,coll uv

Origin of large logarithms
e Remnants of UV singularities can be absorbed into running couplings

e Mass singularities from soft/collinear gauge bosons coupling to external lines

dE d cos 6
(1 —cosB)

Analogies with QED and QCD? Factorization and universality?




Factorization and universality of one-loop EW logarithms [penner, s.P. (2001) ]

For arbitrary processes (e,v,u,d,t,b,7, Z, Wi, H,g)
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proven with collinear Ward identities for spontaneously broken YM theories
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Simple and general recipe for LL and NLL at one loop ...

maybe too simple?!



Precision of NLL/NNLL dPPprox. for PP — ZJ [Kijhn, Kulesza, S.P., Schulze (2005)]

Asymptotic expansion (|3|, |t], |4| > M7,) for q@ — Zg amplitude
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Very compact expressions
e NLL predicted by process-independent formula [penner, s.P. (2001)]

e NNLL consist of 7%, 7/+/3, In(t/4), ... not growing with energy



NLL/NNLL approximations vs exact calculation

do/dpr for pp— Zj
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= use asymptotic expansions for two-loop EW corrections at high energies



Two-loop LL and NLL corrections for pp—Wj [kinn, uleszasP.Schutze (2007)]

Compact formula for partonic scattering amplitudes (g¢" — Wg)
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Factorization and Exponentiation of IR logarithms: QCD vs EW

Logarithmic dependence of QCD scattering amplitudes on IR cut-off

oM

0 In(ur) 1

T

Q
= K(pr)M = M(pT) = exp [—/ d—'UJK(M)] M(Q)

Powerful formalism to describe higher-order logarithms in QCD: can be used to

derive higher-order EW logarithms?

How to deal with mass gap in the electroweak gauge sector?

Y W

M»YZO <K My ~ Mw :



Symmetry-breaking problem reduced to two problems with unbroken symmetry

SU(2)xU(1) regime: ut > Mw z U(1)em regime: pur < My z
Y, L, W v W
mass gap irrelevant (M, = My = M) weak boson frozen (Myz, Mw = 00)
oM oM
M _ g I _ Kk
aln(,uT> EW(:U“T)M 8111(,UT) QED(MT)M
as in symmetric SU(2) x U(1) theory as in QED

Prediction: double factorization and exponentiation

My V's
./\/l(,uT):exp{—/ d71((QEI)(,IL)}G><]§){/ dI'UKEW( )}MBorn

Fadin, Lipatov, Martin, Melles (2000)




Two-loop calculations based on EW Feynman rules

QCD-inspired resummations rely on strong theoretical assumptions

e EWSB completely neglected! (apart from two-regime splitting)

Can be checked against explicit 2-loop calculations
e select relevant loop diagrams generated from SB EW Lagrangian

e extract logarithms arizing in IR and UV regions

The (few) existing results agree with the QCD-inspired resummations

2 4 S 3 S
« Cy In ( ) -+ Cs3 In ( )

\ \
Melles; Hori,Kawamura, Kodaira (2000) S.P. (2004)
Beenakker, Werthenbach (2000,2002)

Denner, Jantzen, S.P. (2006,2008)
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Denner, Melles, S. P. (2003)
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arbitrary processes involving Z, W, H, b, t,. .. fifa—= fs... [n




(A) Factorizable two-loop diagrams

Soft /collinear gauge bosons and Higgs/Goldstone bosons coupling only to ext. lines

Factorization and explicit calculation using sector decomposition [penner, s.P. (2004)]
= L =In(Q*/M?) > 1 and poles in D = 4 — 2¢ from massless v and fermions
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(B) Cancellation of non-factorizable two-loop diagrams

Collinear gauge bosons coupling to external and internal lines

\% V. V. Vo
: S 2 2 Vi =
|41 \41 |41 V3

Collinear Ward identities for SB non-abelian theories [penner, Jantzen, S.P. (2001,2006)]
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This cancellation mechanism permits process-independent treatment



Two-loop NLL result for fifo — f3... f,

% i i
; 1 Vi x}71 1 Vé 1 v?l
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] j j k k !
i i i 1 3
= exp [ —< EAW ] exp [Z —< EW,Z;y] [1 + Z —< EAZ ] ‘
Jj<i J j<i J j<i J 2 n

O(100) inequivalent two-loop diagrams = very simple result!
e Two-loop = exp(1-loop)x Born

e Confirms structure predicted by QCD-inspired resummations



1 3 g
. 1
+ 22*@ [)@{ ){
2 n 1,7 j 1,7,k,l
Vo i V2 i
1 A 5

+ Vi o+ Vi +§f V2+~i V2z+

j j j k

= exp [
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contains only L = In(s/M;,) and behaves as in a
symmetric SU(2)xU(1) theory with My = Mz = M,



Two-loop NLL result for fif; — f3...f,
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photonic 1/¢ singularities
factorize and behave as in QED




Two-loop NLL result for fif; — f3...f,
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Addltlonal mixing correction
depending on Z-W mass difference
= 0(1072) effect at two loops



Two-loop NLL result for fifo — f3... f,
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e these results applicable to qg — pu" ™, ud — tb, gg — bb, ...
e our tools permit to extend this analysis to processes with v, W, Z, H

e will start to play a (small) role only at 100 fb~! or higher integ. luminosities



