Higgs boson production via vector boson fusion at next-to-leading order

Terrance Figy

CERN Theory Group

CERN Theory Group Retreat, Les Houches Centre de Physique, 4 Nov 2009

Outline

Overview

- Standard Model Higgs Boson
- Higgs Boson Production and Decay

Piggs Boson Production via Vector Boson Fusion

3 Results

- Hjj via VBF at NLO
- Anomalous Higgs Boson Couplings
- Hjjj via VBF at NLO

- 4 回 ト - 4 三 ト - 4 三 ト

Concluding Remarks

SM Higgs boson Spontaneous Symmetry Breaking: $SU(2)_L imes U(1)_Y o U(1)_{em}$

SM Higgs Doublet

$$\Phi = U(x)\frac{1}{\sqrt{2}}\begin{pmatrix}0\\v+H\end{pmatrix}$$

The remormalizable Lagrangian

$$\mathcal{L} = |D_\mu \Phi|^2 + \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2$$

leads to the vacuum expectiation value $v = \sqrt{\frac{\mu^2}{\lambda}}$ for the Higgs field *H*.

(本部) (本語) (本語)

 H^0 production via VBF

Results

Concluding Remarks

SM Higgs boson Higgs couplings to fermions

Fermion masses arise from Yukawa couplings via $\Phi^{\dagger} \rightarrow \left(0, \frac{\nu+H}{\sqrt{2}}\right).$

$$\mathcal{L}_{\mathrm{Yukawa}} = -\sum_{f} m_{f} \bar{f} f \left(1 + \frac{H}{v} \right)$$

- Test SM prediction: $\overline{f} fH$ Higgs coupling strength $= m_f/v$
- Observation of Hff Yukawa coupling is no proof that a v.e.v exists

(人間) (人) (日)

Concluding Remarks

SM Higgs boson Higgs couplings to gauge bosons

Kinetic energy term of the Higgs doublet field:

$$(D^{\mu}\Phi)^{\dagger} (D_{\mu}\Phi) = \frac{1}{2} \partial^{\mu} H \partial_{\mu} H + \left[\left(\frac{gv}{2} \right)^{2} W^{\mu} W^{-}_{\mu} + \frac{1}{2} \frac{(g^{2} + g'^{2})v^{2}}{4} Z^{\mu} Z_{\mu} \right] \left(1 + \frac{H}{v} \right)^{2}$$

- W,Z mass generation: $m_W^2 = \left(\frac{gv}{2}\right)^2$, $m_Z^2 = \frac{\left(g^2 + g'^2\right)v^2}{4}$
- WWH and ZZH couplings are generated:coupling strength $= 2m_V^2/v \approx g^2 v$ within SM

日本《國》《日》《日》

 H^0 production via VBF

Results

Concluding Remarks

æ

Total SM Higgs cross sections at the LHC

Concluding Remarks

Decay of the SM Higgs

Concluding Remarks

Statistical and systematic errors at the LHC

- QCD/PDF uncertainties: ±5% for VBF, ±20% for gluon fusion
- luminosity/acceptance uncertainties : ±5%

< ≣ >

< 🗗 ▶

< ≣⇒

Concluding Remarks

Vector Boson Fusion

Higgs search channels:

- $H \rightarrow W^+ W^-$, $m_H > 120 \text{ GeV}$
- $H \rightarrow \tau^+ \tau^-$, $m_H < 140 \text{ GeV}$
- $H \rightarrow \gamma \gamma$, $m_H < 150 \,\,{
 m GeV}$

Eboli, Hagiwara, Kauer, Plehn,

イロト イポト イヨト イヨト

Rainwater, Zeppenfeld, . . .

Results

Concluding Remarks

Vector Boson Fusion

Event Characteristics

- Energetic jets in the forward and backward directions ($p_T > 20 \text{ GeV}$)
- Higgs decay products between tagging jets
- Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange (central jet veto: no extra jets with $p_T > 20$ GeV and $|\eta| < 2.5$)

 H^0 production via VBF

Results

Concluding Remarks

æ

・ロト ・回ト ・ヨト ・ヨト

Vector Boson Fusion

Example: Gluon fusion vs vector boson fusion

JHEP 05 (2004) 064

$$y_{\rm rel} = y_j^{\rm veto} - (y_j^{\rm tag~1} + y_j^{\rm tag~2})/2$$

Results

Concluding Remarks

Higgs Production via Vector Boson Fusion at NLO The NLO Calculation

T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D 68, 073005 (2003)

Results

Concluding Remarks

Higgs Production via Vector Boson Fusion at NLO Dipole subtraction method

Catani and Seymour, hep-ph/9605323

NLO cross section:

$$\sigma_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) + \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})]$$

$$\sigma^{\mathsf{NLO}\{4\}}_{ab}(p,ar{p}) = \int_4 [d\sigma^R_{ab}(p,ar{p})_{\epsilon=0} - d\sigma^A_{ab}(p,ar{p})_{\epsilon=0}]$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Results

Concluding Remarks

Higgs Production via Vector Boson Fusion at NLO Dipole subtraction method

Catani and Seymour, hep-ph/9605323

NLO cross section:

$$\sigma_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) + \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})]$$

$$\sigma_{ab}^{NLO{3}}(p,ar{p}) = \int_{3} [d\sigma_{ab}^{V}(p,ar{p}) + d\sigma_{ab}^{B}(p,ar{p}) \otimes \mathbf{I}]_{\epsilon=0}$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Results

Concluding Remarks

Higgs Production via Vector Boson Fusion at NLO Dipole subtraction method

Catani and Seymour, hep-ph/9605323

NLO cross section:

$$\sigma_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) + \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})]$$

$$\int_0^1 dx \hat{\sigma}_{ab}^{NLO{3}}(x, xp, \bar{p}) = \sum_{a'} \int_0^1 dx \int_3 \{ d\sigma_{a'b}^B(xp, \bar{p}) \\ \otimes [\mathbf{P}(x) + \mathbf{K}(x)]^{aa'} \}_{\epsilon=0}$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Applied Cuts

- Require two hard jets with $p_{Tj} \ge 20 \,\, {
 m GeV}, \, |y_j| \le 4.5$
- Higgs decay: p_{Tℓ} ≥ 20 GeV, |η_ℓ| ≤ 2.5, ΔR_{jℓ} ≥ 0.6 Additionally, the Higgs decay products are required to fall between the tagging jets.

$$y_{j,min} < \eta_{\ell_{1,2}} < y_{j,max}$$

 Backgrounds to VBF are significantly suppressed by requiring a large rapidity separation of the two tagging jets.

$$\Delta y_{jj} = |y_{j_1} - y_{j_2}| > 4$$

イロト イヨト イヨト イヨト

Tagging Jet Selection

- *p*_T -method: Define the tagging jets at the two highest
 *p*_T jets in the event.
- *E* -method: Define the tagging jets as the two highest energy jets in the event.

イロト イポト イヨト イヨト

H^0 production via VBF

Results

Concluding Remarks

- p_T method: 3-5 % higher than LO
- E method: 6-9 % higher that LO

 H^0 production via VBF

Results

Concluding Remarks

Tagging jet rapidity separation

Results

Concluding Remarks

Anomalous Higgs Couplings

General Tensor Structure for the *HVV* vertex

$$egin{aligned} T^{\mu
u}(q_1,q_2) &= a_1(q_1,q_2)g^{\mu
u} \ &+ a_2(q_1,q_2)[q_1\cdot q_2g^{\mu
u}-q_2^\mu q_1^
u] \ &+ a_3(q_1,q_2)arepsilon^{\mu
u
ho\sigma}q_{1
ho}q_{2\sigma} \end{aligned}$$

<回> < 回> < 回> < 回>

Results

Concluding Remarks

Anomalous Higgs Couplings

General Tensor Structure for the HVV vertex

$$egin{aligned} T^{\mu
u}(q_1,q_2) &= & a_1(q_1,q_2)g^{\mu
u} \ &+ & a_2(q_1,q_2)[q_1\cdot q_2g^{\mu
u}-q_2^\mu q_1^
u] \ &+ & a_3(q_1,q_2)arepsilon^{\mu
u
ho\sigma}q_{1
ho}q_{2\sigma} \end{aligned}$$

SM-like: *a*1
 CP even: *a*2
 CP odd: *a*3

イロト イポト イヨト イヨト

Results

Concluding Remarks

Anomalous Higgs Couplings

General Tensor Structure for the *HVV* vertex

$$egin{aligned} T^{\mu
u}(q_1,q_2) &=& a_1(q_1,q_2)g^{\mu
u} \ &+& a_2(q_1,q_2)[q_1\cdot q_2g^{\mu
u}-q_2^\mu q_1^
u] \ &+& a_3(q_1,q_2)arepsilon^{\mu
u
ho\sigma}q_{1
ho}q_{2\sigma} \end{aligned}$$

The QCD corrections to Higgs production via VBF are computed in the presence of anomalous *HVV* couplings using VBFNLO. T. Figy and D. Zeppenfeld, Phys. Lett. B **591**, 297 (2004)

イロト イヨト イヨト イヨト

Results

Concluding Remarks

Anomalous Higgs Couplings

General Tensor Structure for the HVV vertex

$$egin{aligned} T^{\mu
u}(q_1,q_2) &= & a_1(q_1,q_2)g^{\mu
u} \ &+ & a_2(q_1,q_2)[q_1\cdot q_2g^{\mu
u}-q_2^\mu q_1^
u] \ &+ & a_3(q_1,q_2)arepsilon^{\mu
u
ho\sigma}q_{1
ho}q_{2\sigma} \end{aligned}$$

Form factor dependence

$$a_i(q_1,q_2) = a_i(0,0) rac{M^2}{|q_1^2|+M^2} rac{M^2}{|q_2^2|+M^2}$$

イロト イポト イヨト イヨト

Results

Concluding Remarks

Anomalous Higgs Couplings

p_{T_i} distributions

Results ○○○○○○○○○○○○○○○○○○ **Concluding Remarks**

Anomalous Higgs Couplings

< ≣ >

< 🗗 >

- < ∃ →

æ

Results

Concluding Remarks

Anomalous Higgs Couplings

The case: $a_2 = a_3$

Concluding Remarks

Anomalous Higgs Couplings

Redefinition of ϕ_{jj}

Invariant under

 (b₊, p₊) ↔ (b₋, p₋)

 Parity odd variable

イロト イポト イヨト イヨト

V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Phys. Rev D74 (2006) 095001 [hep-ph/0609075] Define the azimuthal angle between j_+ and j_- as:

$$\varepsilon_{\mu\nu\rho\sigma}b^{\mu}_{+}p^{\nu}_{+}b^{\rho}_{-}p^{\sigma}_{-}=2p_{T,1}p_{T,2}\sin(\phi_{+}-\phi_{-})=2p_{T,1}p_{T,2}\sin\Delta\phi_{jj}$$

э

Results

Concluding Remarks

Anomalous Higgs Couplings

- Mixed CP case: a₂ = a₃, a₁ = 0
- Pure CP–even case: *a*₂ only
- Pure CP–odd case: a₃ only

< 🗇 🕨

< E → < E →</p>

Position of minimum of the $\Delta \phi_{jj}$ distribution measures the relative size of the CP–even and CP–odd couplings.

$$a_1 = 0$$
, $a_2 = d \cos \alpha$, $a_3 = d \sin \alpha$

 \implies Maxima at α and $\alpha + \pi$

 H^0 production via VBF

Results

Concluding Remarks

Hjjj via VBF at NLO Total Cross section

 H^0 production via VBF

Results

Concluding Remarks

æ

Hjjj via VBF at NLO Veto Jet Distributions

Veto Jet Rapadity

・ロト ・回ト ・ヨト ・ヨト

 H^0 production via VBF

Results

Concluding Remarks

Hjjj via VBF at NLO Veto Jet Distributions

Veto Jet P_T

イロト イヨト イヨト イヨト

Results

Concluding Remarks

Hjjj via VBF at NLO Veto Jet Distributions

- Veto is slightly softer at NLO.
- $\xi = 2^{\mp 1}$ scale variations at $y_{rel} = 0$:
 - LO: -27% to +42%
 - NLO: -20% to +7%

• Suppressed radiation in the vicinity of $y_{rel} = 0$.

イロト イヨト イヨト イヨト

Results

Concluding Remarks

Hjjj via VBF at NLO Veto Probability for the VBF Signal

Results

Concluding Remarks

Hjjj via VBF at NLO Veto Probability for the VBF Signal

イロト イヨト イヨト イヨト

Results

Concluding Remarks

Hjjj via VBF at NLO Veto Probability for the VBF Signal

Concluding Remarks

- In order for make full use of LHC data improved tools are required.
- The program VBFNLO is available at http://www-itp.physik.uni-karlsruhe.de/~vbfnloweb.
- Improvements to *Hjj*: Electroweak and Susy corrections will be included in a future release of VBFNLO.
- Additional processes: Higgs boson production via VBF in association with a photon will be included in a future release of VBFNLO.

A (1) > A (1) > A