Exascale and Extreme Data Science at NERSC

Sudip Dosanjh
NERSC Director

October 17, 2016
NERSC Overview
NERSC has moved to the Computational Research and Theory (CRT) Facility

- Four story, 140,000 GSF, 300 offices, 20Ksf HPC floor, 12.5- >40 MW
- Located for collaboration
 - LBNL, CRD, Esnet, UCB
- Exceptional energy efficiency
 - Natural air and water cooling
 - Heat recovery
 - PUE < 1.1
NERSC Provides HPC and Data Resources for DOE Office of Science Research

Biology, Environment

Computing

Materials, Chemistry, Geophysics

Particle Physics, Astrophysics

Nuclear Physics

Fusion Energy, Plasma Physics

Largest funder of physical science research in U.S.
NERSC directly supports DOE’s science mission

- DOE SC offices allocate 80% of the computing and storage resources at NERSC
- ALCC 10%
- NERSC Director’s Reserve 10%
NERSC has a broad user base

5,000 users from 47 U.S. states

642 international users
Strong focus on science

Martin Karplus

Saul Perlmutter

George Smoot

Warren Washington
Nobel Prize in Physics 2015

Scientific Achievement
The discovery that neutrinos have mass and oscillate between different types

Significance and Impact
The discrepancy between predicted and observed solar neutrinos was a mystery for decades. This discovery overturned the Standard Model interpretation of neutrinos as massless particles and resolved the “solar neutrino problem”

Research Details
The Sundbury Neutrino Observatory (SNO) detected all three types (flavors) of neutrinos and showed that when all three were considered, the total flux was in line with predictions. This, together with results from the Super Kamiokande experiment, was proof that neutrinos were oscillating between flavors and therefore had mass

NERSC helped the SNO team use PDSF for critical analysis contributing to their seminal PRL paper. HPSS serves as a repository for the entire 26 TB data set.

Nobel Recipients: Arthur B. McDonald, Queen’s University (SNO)
Takaaki Kajita, Tokyo University (Super Kamiokande)
We have a dual mission to advance the state-of-the-art in supercomputing

- We collaborate with computer companies years before a system’s delivery to deploy advanced systems with new capabilities at large scale
- We provide a highly customized software and programming environment for science applications
- We are tightly coupled with the workflows of DOE’s experimental and observational facilities – ingesting tens of terabytes of data each day
- Our staff provide advanced application and system performance expertise to users
Over 600 codes run at NERSC

NERSC 2015 Code Usage

- 10 codes make up 50% of the workload
- 25 codes make up 66% of the workload
NERSC Deployed Edison in 2013

• Edison is the HPCS* demo system (serial #1)
• First Cray Petascale system with Intel processors (Ivy Bridge), Aries interconnect and Dragonfly topology
• Very high memory bandwidth (100 GB/s per node), interconnect bandwidth and bisection bandwidth
• 5,576 nodes, 133K cores, 64 GB/node
• Exceptional application performance

*DARPA High Productivity Computing System program
NERSC’s Users Require a Low Latency, Highly Scalable Interconnect

The introduction of the new Cori Phase 1 machine has enabled users to run at higher concurrencies on Edison

>16K core jobs using 80% of time now

>32K core jobs using 59% of time

>64K core jobs using 32% of time
High concurrency jobs are important across all science domains

- Some fraction of every domain’s workload runs with more than 16K cores.
- In almost all domains, more than half the workload uses more than 1K cores.

Concurrency within science categories on Edison

Cores Used: >16K 1K - 16K
<table>
<thead>
<tr>
<th>Year/Decade</th>
<th>System</th>
<th>Processor</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007/2009</td>
<td>NERSC-5</td>
<td>Franklin</td>
<td>Cray XT4</td>
</tr>
<tr>
<td>2010</td>
<td>NERSC-6</td>
<td>Hopper</td>
<td>Cray XE6</td>
</tr>
<tr>
<td>2014</td>
<td>NERSC-7</td>
<td>Edison</td>
<td>Cray XC30</td>
</tr>
<tr>
<td>2016</td>
<td>NERSC-8</td>
<td>Cori</td>
<td>Cray XC</td>
</tr>
<tr>
<td>2020</td>
<td>NERSC-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>NERSC-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NERSC Timeline

- **NERSC-8 Cori Phase I**
 - 2015: NRP complete 12.5 MW
 - 2016: Staff move in

- **NERSC-8 Cori Phase II**
 - 2016: Edison Move Complete

- **NERSC-9**
 - 2016-18: CRT 25MW upgrade
 - 2020: NERSC-9 150-300 Petaflops

- **CRT 35+ MW upgrade**
 - 2021

- **NERSC-10**
 - 2024: Capable Exascale for broad Science

- **NERSC-11**
 - 2028: 5-10 Exaflops
Exascale at NERSC
We need to transition to energy efficient architectures to reach Exascale

Manycore or Hybrid is the only approach that crosses the exascale finish line
We didn’t deploy accelerators or GPUs in Edison
Disruptions in programming models are a challenge for NERSC
What’s changed for Cori?
- Energy-efficient architectures are needed to meet the science needs of our users
- Heightened awareness about Exascale among application teams
- Many codes are being adapted for next generation systems
- Technology changes (e.g., self-hosted many core chips, tighter CPU/GPU integration) are making the transition easier
Cori Supports the Office of Science HPC Workload and Data-Intensive Science

• **Cray system with 9,300 Intel Knights Landing compute nodes**
 – Self-hosted, (not an accelerator) manycore processor > 64 cores per node
 – On-package high-bandwidth memory at >400GB/sec

• **Robust Application Readiness Plan**
 – Outreach and training for user community
 – Application deep dives with Intel and Cray
 – 8 post-docs integrated with key application teams

• **Data Intensive Science Support**
 – 10 Haswell processor cabinets (Phase 1) to support data intensive applications
 – NVRAM Burst Buffer with 1.5PB of disk and 1.5TB/sec
 – 28 PB of disk, >700 GB/sec I/O bandwidth in Lustre bandwidth
Intel “Knights Landing” Processor

• Next generation Xeon-Phi, 3TF peak
• Single socket processor - Self-hosted, not a co-processor, not an accelerator
• 68 cores per processor with support for four hardware threads each; more cores than current generation Intel Xeon Phi™
• 512b vector units (32 flops/clock – AVX 512)
• 3X single-thread performance over current generation Xeon Phi co-processor (KNC)
• High bandwidth on-package memory, up to 16GB capacity with bandwidth projected to be 5X that of DDR4 DRAM memory
• Higher performance per watt
• Presents an application porting challenge to efficiently exploit KNL performance features
New technologies in Cori Phase 2 increase memory and I/O bandwidth

Comparison of Cori Phase 2 to Edison

- TF/node
- Memory BW/node
- Memory cap./node
- Clock Speed
- Sockets/node
- Cores/node
- Threads/node
- System Memory
- # of nodes
- I/O bandwidth
- Disk Capacity

Ratio Cori P2 to Edison
Transitioning the broad SC workload to energy-efficient architectures

- Collaborate on codes that are proxy’s for much of the workload (NESAP)
- Focus on concurrency and locality
- Advocate for adoption of useful features into existing and emerging programming models
- Provide libraries and training to the broader community
- Establish broader forums for sharing information (e.g., the Intel Xeon Phi User Group)
NESAP Codes

Advanced Scientific Computing Research
- Almgren (LBNL) **BoxLib**
- Trebotich (LBNL) **Chombo-crunch**

High Energy Physics
- Vay (LBNL) **WARP & IMPACT**
- Toussaint (Arizona) **MILC**
- Habib (ANL) **HACC**

Nuclear Physics
- Maris (Iowa St.) **MFDn**
- Joo (JLAB) **Chroma**
- Christ/Karsch (Columbia/BNL) **DWF/HISQ**

Basic Energy Sciences
- Kent (ORNL) **Quantum Espresso**
- Deslippe (NERSC) **BerkeleyGW**
- Chelikowsky (UT) **PARSEc**
- Bylaska (PNNL) **NWChem**
- Newman (LBNL) **EMGeo**

Biological and Environmental Research
- Smith (ORNL) **Gromacs**
- Yelick (LBNL) **Meraculous**
- Ringler (LANL) **MPAS-O**
- Johansen (LBNL) **ACME**
- Dennis (NCAR) **CESM**

Fusion Energy Sciences
- Jardin (PPPL) **M3D**
- Chang (PPPL) **XGC1**
Lessons learned

- Identify/Exploit On-node shared-memory parallelism
- Identify/Exploit On-core vector parallelism
- Understand and optimize memory bandwidth requirements with MCDRAM
Have our training sessions, outreach and case studies made a difference?

Users report significant increase in readiness and awareness of Cori architecture
Data Intensive Science
NERSC has been supporting data intensive science for a long time.

- Palomar Transient Factory Supernova
- Planck Satellite Cosmic Microwave Background Radiation
- Alice Large Hadron Collider
- Atlas Large Hadron Collider
- Dayabay Neutrinos
- ALS Light Source
- LCLS Light Source
- Joint Genome Institute Bioinformatics
NERSC users import more data than they export!

Importing more than 1PB/month

Exporting more than 1PB/month
We currently deploy separate Compute Intensive and Data Intensive Systems

Compute Intensive

- Edison
- Hopper

Data Intensive

- Carver
- Genepool
- PDSF
Need for Change

• Dramatically growing data sets require Petascale+ computing for analysis
• We increasingly need to couple large-scale simulations and data analysis
But how different really are the compute and data intensive platforms?

<table>
<thead>
<tr>
<th>Policies</th>
<th>Software/Configuration</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast-turn around time.</td>
<td>• Support for complex workflows</td>
<td>• Local disk for fast I/O</td>
</tr>
<tr>
<td>Jobs start shortly after submitted</td>
<td>• Communication and streaming data from external databases and data sources</td>
<td>• Some systems (not all) have larger memory nodes</td>
</tr>
<tr>
<td>• Can run large numbers</td>
<td>• Support for complex workflows</td>
<td>• Support for advanced workflows (DB, web, etc)</td>
</tr>
<tr>
<td>of throughput jobs</td>
<td>• Communication and streaming data from external databases and data sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Easy to customize user environment</td>
<td></td>
</tr>
</tbody>
</table>

Differences are primarily software and policy issues with some hardware differences in the ratio of I/O, memory and compute
NERSC is making significant investments on Cori to support data intensive science

- High bandwidth external connectivity to experimental facilities from compute nodes (Software Defined Networking)
- NVRAM Flash Burst Buffer as I/O accelerator
 - 1.5PB, 1.5 TB/sec
 - User can request I/O bandwidth and capacity at job launch time
 - Use cases include, out-of-core simulations, image processing, shared library applications, heavy read/write I/O applications
- Virtualization capabilities (Docker)
- More login nodes for managing advanced workflows
- Support for real time and high-throughput queues
- Big Data Software
Upgrading Cori’s External Connectivity

Enable 100Gb+ Instrument to Cori

- Streaming data to the supercomputer allows for analytics on data in motion
- Cori network upgrade provides SDN (software defined networking) interface to ESnet. 8 x 40Gb/s bandwidth.
- Integration of data transfer and compute enables workflow automation

Cori Network Upgrade Use Case:

- X-ray data sets stream from detector directly to Cori compute nodes, removing need to stage data for analysis.
- Software Defined Networking allows planning bandwidth around experiment run-time schedules.
- 150TB bursts now, LCLS-II has 100x data rates
Shifter: Containers for HPC

Challenge and Opportunity
• Data Intensive computing often require large, complex software stacks that are difficult to support in HPC
• Docker is rapidly becoming a new way to package and run applications

Innovation
• Shifter is a NERSC R&D effort, in collaboration with Cray, to support User-created Application images.
• Shifter provides “Docker-like” functionality for HPC

Impact and Early Successes
• Shifter has already enabled multiple projects to quickly make use of NERSC (e.g. LCLS, LHC)
• Shifter can improve job-startup times and application performance (e.g. Python)
• Shifter will be supported by Cray and is already being evaluated by other HPC centers
Burst Buffer Motivation

- Flash storage is significantly more cost effective at providing bandwidth than disk (up to 6x)
- Flash storage has better random access characteristics than disk, which help many SC workloads
- Users’ biggest request (complaint) after wanting more cycles, is for better I/O performance

Application perceived I/O rates, with no burst buffer (top), burst buffer (bottom).

Analysis from Chris Carothers (RPI) and Rob Ross (ANL)
NERSC is exploring Burst Buffer Use Cases beyond checkpoint-restart

• **Accelerate I/O**
 – Checkpoint/restart or other high bandwidth reads/writes
 – Apps with high IOP/s e.g. non-sequential table lookup
 – Out-of-core applications
 – Fast reads for image analysis

• **Advanced Workflows**
 – Coupling applications, using the Burst Buffer as interim storage
 – Streaming data from experimental facilities

• **Analysis and Visualization**
 – In-situ/ in-transit
 – Interactive visualization
Big Data Software Portfolio

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Technology Areas</th>
<th>Tools, Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Transfer + Access</td>
<td>Globus, Grid Stack, Authentication</td>
<td>Globus Online, Grid FTP</td>
</tr>
<tr>
<td></td>
<td>Portals, Gateways, RESTful APIs</td>
<td>Drupal/PHP, Django/Python, NEWT</td>
</tr>
<tr>
<td>Data Processing</td>
<td>Workflows</td>
<td>Swift, Fireworks, ...</td>
</tr>
<tr>
<td>Data Management</td>
<td>Formats, Models</td>
<td>HDF5, NetCDF, ROOT</td>
</tr>
<tr>
<td></td>
<td>Databases</td>
<td>MongoDB, SciDB, PostgreSQL, MySQL</td>
</tr>
<tr>
<td></td>
<td>Storage, Archiving</td>
<td>Lustre/GPFS, HPSS, SRM</td>
</tr>
<tr>
<td>Data Analytics</td>
<td>Statistics, Machine Learning</td>
<td>python, R, ROOT</td>
</tr>
<tr>
<td></td>
<td>Imaging</td>
<td>BDAS/Spark</td>
</tr>
<tr>
<td>Data Visualization</td>
<td>SciVis, InfoVis</td>
<td>VisIt, Paraview</td>
</tr>
</tbody>
</table>
Conclusions

• Progress is being made on a wide range of codes
 — Focus is on concurrency and locality

• Increasing engagement from scientific facilities
 — Burst buffer
 — Real time queues
 — Software defined networking

• Focus on improved scalability for deep learning

• Including data benchmarks and workflows in planning for NERSC-9 (2020)