
Dynamical Provisioning of Cloud Computing
Resources for Batch Processing

Marty Kandes

Distributed High-Throughput Computing Group
San Diego Supercomputer Center
University of California, San Diego

HEPiX Fall 2016
Lawrence Berkeley National Laboratory

October 19th, 2016

About Me

I Open Science Grid (OSG) (Started February 2015)

GlideinWMS Factory Operations (60%)

Software Development & Testing (40%)

I Computational Physics, Applied Math, Traditional HPC

Objective

Build a service for provisioning cloud-based computing resources
(HTCondor execute nodes) that can be used to augment users’
existing, fixed resources and meet their batch job demands.

Vision (Extend HTCondor Pools to The Cloud)

AWS

CM

SN

WN

CM
OSG

OSG

AWS

WN

WN

LOCAL LOCAL

condor annex = HTCondor + Amazon Web Services

Perl-based script that utilizes the AWS command-line interface and
other AWS services to orchestrate the delivery of HTCondor
execute nodes to your HTCondor pool.

Some key features:

I Supports bidding for spot instances.

I Instances sitting idle, not running user jobs will terminate
after a fixed idle time (20 min).

I Each annex has a finite (max wallclock) lifetime.

Currently being developed into an HTCondor daemon that will
provide the same and/or similar functionality as the prototype.

How does condor annex work?

1. Reads in and parses annex configuration options.

2. AWS CloudFormation manages complete life cycle of annex
resources and services from annex creation to termination.

3. AWS Simple Storage Service (S3) stores shared configuration
information (HTCondor configuration files, pool password).

4. AWS Autoscaling Group (ASG) manages annex size.

5. AWS CloudWatch monitors annex resources and services.
Most important metric is custom annex lease/lifetime.

6. AWS Identity and Accesss Management (IAM) Roles, AWS
Lambda Functions, and AWS Simple Notification Service
(SNS) help monitor and enforce annex lease.

7. AWS Elastic Compute Cloud (EC2) provides annex instances.

How to install and configure condor annex?

1. Sign-up for AWS account.

2. Generate credentials to acccess AWS CLI.

3. Generate keypair to allow SSH access to annex instances.

4. Configure HTCondor pool to use password authentication.

5. Build condor annex-compatible Amazon Machine Image.

6. Install and configure AWS CLI on HTCondor submit node.
yum install python-pip

pip install awscli

aws configure

7. Install and configure condor annex on HTCondor submit node.
yum install git

yum install perl-JSON

git clone

https://github.com/htcondor/htcondor.git -b

V8 5-condor annex-branch

8. Make custom changes (e.g., firewalls, CCB) as necessary.

How to run condor annex?

/opt/htcondor/src/condor annex/condor annex

--project-id "$PROJECT ID"

--region "$AWS DEFAULT REGION"

--vpc "$AWS VPC ID"

--subnet "$AWS SUBNET ID"

--keypair "$AWS KEY PAIR NAME"

--instances $NUMBER OF INSTANCES TO ORDER

--expiry "$AWS LEASE EXPIRATION"

--password-file "$CONDOR PASSWORD FILE"

--image-ids "$AWS AMI ID"

--instance-types "$AWS INSTANCE TYPE"

--spot-prices $AWS SPOT BID >> /condor annex.log

Disclaimers (condor annex is still a prototype)

I AWS CloudTrail can (and should) be used to augment
condor annex provided logging information.

I Watch out for AWS account limits.
A client error (LimitExceededException) occurred when

calling the CreateStack operation: Limit for stack has been

exceeded

I Known race-like conditions may occur.
10:07:51 UTC-0700 DELETE FAILED AWS::SNS::Topic Topic User:

arn:aws:sts::720506099995:assumed-role/htcondor-annex-172-31-43-238-wor-LeaseFunctionRole-P24FJ

R94GI3W/awslambda 729 20160709170725120 is not authorized to

perform: SNS:GetTopicAttributes on resource:

arn:aws:sns:us-west-2:720506099995:htcondor-annex-172-31-43-238-worw8kkyaqji9i4k-Topic-1XITNHSRBGV9V

I Hard-coded configuration (e.g., S3 URL for pool password).

condor annex User Beta Test I

Physics Computing Facility (PCF) UCLHC “Brick” @ UCSD

I Integrated computing platform for Physics faculty, students,
and staff, but open to all UCSD researchers.

I User jobs may target local in-“Brick” resources (48 cores),
CMS Tier 2 (7.8k cores); Comet @ SDSC (48k cores), as well
as OSG and UCLHC resources.

I condor annex will allow researchers to purchase AWS
resources on-demand to run time-sensitive jobs as well.

I Ready for users to begin testing November 2016.

I https://github.com/mkandes/condor annex

condor annex User Beta Test II

Open Science Grid (OSG) via Extreme Science and Engineering
Discovery Environment (XSEDE)

I Login/submit node for XSEDE users to access OSG resources.

I condor annex will allow XSEDE users to purchase AWS
resources on-demand to run time-sensitive jobs as well.

I Ready for users to begin testing December 2016.

I https://github.com/mkandes/condor annex

Provisioning Problem

How many instances do we order with condor annex to meet
current user job demand?

Optimization Problem vs. Control Problem

I Forget optimally scheduling jobs and resources; too hard.

I Seek to provision resources in a controlled way.

I Build a system that aims to provision resources safely and use
them as efficiently as possible.

Provisioning Model I/II: State Diagram

Flock

X

X

X

R

I

Q

Provision

Complete

Submit

Terminate

Match

Terminate

Provisioning Model I: System of Equations (ODEs)

dXQ

dt
= ΣQ − σQIRXIXQ

dXI

dt
= σQIXQ − σQIRXQXI + σRIXR − σITXI

dXR

dt
= σQIRXQXI − σRIXR − σRTXR

I XQ is the number of jobs in the queue waiting to run

I XI is the number of idle machines (not running jobs)

I XR is the number of busy machines (busy running jobs)

I ΣQ is the rate of job submission

I σQIR is the matchmaking rate

I σQI is the provisioning rate

I σRI is the completion rate

I σIT is the idle-termination rate (1/20 min).

I σRT is the running-termination rate (1/annex lifetime)

Provisioning Model I: Equilibria
Solve.

dXQ

dt
= fQ (XQ ,XI ,XR) = 0

dXI

dt
= fI (XQ ,XI ,XR) = 0

dXR

dt
= fR (XQ ,XI ,XR) = 0

Find two equilibrium points.

X ∗
Q =

ΣQσRT
2σQI (σRI + σRT)

1 ±

√
1 +

4σITσQI (σRI + σRT)2

ΣQσQIRσ
2
RT


X ∗
I =

ΣQσRT
2σIT (σRI + σRT)

−1 ±

√
1 +

4σITσQI (σRI + σRT)2

ΣQσQIRσ
2
RT


X ∗
R =

ΣQ

σRI + σRT

Provisioning Model I: Stability of Equilibria

Find Jacobian.

J =
df

dx
=


dfQ
dxQ

dfQ
dxI

dfQ
dxR

dfI
dxQ

dfI
dxI

dfI
dxR

dfR
dxQ

dfR
dxI

dfR
dxR


Compute eigenvalues of Jacobian about equilibria.

f(x) = f(x∗) + J(x∗)(x − x∗) + · · ·

If the eigenvalues all have real parts that are negative, then the
system is stable near the stationary point, if any eigenvalue has a
real part that is positive, then the point is unstable.

Simple Run Test: Protocol

1. Launch M on-demand (t1.micro) instances.

2. Wait for on-demand instances to start-up and join the pool.

3. Submit N jobs with average lifetime of τRI .

4. Monitor XQ(t), XI (t), and XR(t) over time.

5. Test ends when XQ(t) = 0 and XI (t) = M.

6. Repeat for different M, N, τRI .

Simple Run Test: Experimental Results v. PM1 (ODEs)

1

10

100

1000

10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Submission Response Test: Protocol

1. Fix annex lifetime, τRT .

2. Submit jobs at rate of ΣQ with an average job lifetime of τRI .

3. Order σQIXQ(t) instances with condor annex every hour.

4. Monitor XQ(t), XI (t), and XR(t) over time.

5. Test ends after 72 hours (3 days).

6. Repeat for different τRT , ΣQ , τRI , σQI .

Submission Response Test: Exp. Results v. PM1 (ODEs)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

ΣQ = 60 jobs / hour

τRI = 1 - 3 hours

τIT = 20 minutes

τRT = 12 hours

σQI = 0.1 / hour

No job restarts

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Submission Response Test: Exp. Results v. PM1 (ODEs)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

ΣQ = 60 jobs / hour

τRI = 1 - 3 hours

τIT = 20 minutes

τRT = 18 hours

σQI = 0.1 / hour

No job restarts

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Submission Response Test: Exp. Results v. PM1 (ODEs)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

ΣQ = 60 jobs / hour

τRI = 1 - 3 hours

τIT = 20 minutes

τRT = 24 hours

σQI = 0.1 / hour

No job restarts

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Possible Source of Oscillations

In the mathematical theory of bifurcations, a Hopf bifrucation is
a critical point where a system’s stability switches and a periodic
solution arises.

In mathematics, delay differential equations (DDEs) are a type
of differential equation in which the derivative of the unknown
function at a certain time is given in terms of the values of the
function at previous times.

Instance Spin-up Delay Test: Protocol

1. Submit N jobs with job lifetime of τRI .

2. Order M < N instances with annex/instance lifetime of τRT .

3. Monitor XQ(t), XI (t), and XR(t) over time.

4. Test ends when XR(t = τQI) = M.

5. Record instance spin-up delay, τQI .

6. Repeat for different M.

7. Compare condor annex vs. AWS CLI.

Instance Spin-up Delay Test: Experimental Results

0

500

1000

1500

2000

2500

1 10 100 1000

In
s
ta

n
c
e

 S
p

in
-u

p
 D

e
la

y
,

τ
Q

I
(s

)

Number of Instances, M

condor_annex

AWS CLI

Submission Response Test: Exp. Results v. PM2 (DDEs)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

ΣQ = 60 jobs / hour

τRI = 1 - 3 hours

τIT = 20 minutes

τRT = 12 hours

σQI = 0.1 / hour

No job restarts

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Submission Response Test: Exp. Results v. PM2 (DDEs)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

ΣQ = 60 jobs / hour

τRI = 1 - 3 hours

τIT = 20 minutes

τRT = 18 hours

σQI = 0.1 / hour

No job restarts

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Submission Response Test: Exp. Results v. PM2 (DDEs)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

ΣQ = 60 jobs / hour

τRI = 1 - 3 hours

τIT = 20 minutes

τRT = 24 hours

σQI = 0.1 / hour

No job restarts

N
u

m
b

e
r

o
f

J
o

b
s
 /

 M
a

c
h

in
e

s
,

X
j

Time, t (hours)

Queued (XQ) Jobs

Idle (XI) Machines

Running (XR) Jobs / Machines

Provisioning Service Development & Testing Plan

I Python (HTCondor bindings) + SQLite application database

I Database schema developed (June/July 2016)

I Database schema implemented (August 2016)

I System/administrative functions (December 2016)

I Large Workflows / Provisioning Model I (January 2017)

I Test with condor annex prototype (Feburary 2017)

I condor annex as an HTCondor daemon (?)

I Generalized Workflows / Provisioning Model II/III/? (?)

I https://github.com/mkandes/zephyr

Acknowledgments

Todd Miller @ UW - Madison
Center for High Throughput Computing, HTCondor

Frank Würthwein @ UCSD
Open Science Grid, Executive Director

Jeff Dost @ UCSD
Open Science Grid, Glidein Factory Operations / Software

Edgar Fajardo @ UCSD
Open Science Grid, Software

Heather Matson @ Amazon (matsonh@amazon.com)
AWS Higher Education, Enterprise Account Manager

Sanjay Padhi @ Amazon (sanpadhi@amazon.com)
AWS Scientific Computing, Principal Technical Business Manager

AWS Cloud Credits for Research Program

Supports researchers who seek to:

I Build cloud-hosted publicly available science-as-a-service
applications, software, or tools to facilitate their future
research and the research of their community.

I Perform proof of concept or benchmark tests evaluating the
efficacy of moving workloads or open data sets to the cloud.

I Train a broader community on the usage of cloud for research
workloads via workshops or tutorials.

I https://aws.amazon.com/research-credits/

