JLab “SciPhi-XVI” KNL Cluster

Thomas Jefferson National Accelerator Facility
https://scicomp.jlab.org/docs/KNLToplevPage

Sandy Philpott
philpott@jlab.org

HEPiX LBNL
October 19, 2016
Background

USQCD – DOE LQCD-extII hardware project (2015-2019)

http://www.usqcd.org/index.html

3 sites: JLab, FNAL, BNL
in conjunction with USQCD software project

FY16 procurement installed at Jlab in August
~ $1M, 49TF USQCD benchmarks

Investigated several possibilities …

• Intel Xeon Phi / Knights Landing
• NVIDIA Pascal GPU, CUDA
• Intel Broadwell CPU server

Consideration factors

• hardware availability timeline
• high speed network – 100 Gbps price/performance; Omni-Path or Infiniband
• available configurations
• reflective benchmarks of USQCD codes

Strategy: optimize portfolio of machines to get the most science on the portfolio of applications
Procurement Process

<table>
<thead>
<tr>
<th>Month</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul ’15</td>
<td>Alternatives Analysis & Site Selection</td>
</tr>
<tr>
<td>Aug ’15</td>
<td>Executive Committee review</td>
</tr>
<tr>
<td>Sep ’15</td>
<td>FY16 budget finalization</td>
</tr>
<tr>
<td>Oct ’15</td>
<td>Detailed Acquisition Plan</td>
</tr>
<tr>
<td>Nov ’15</td>
<td>RFI (done Sep ‘15)</td>
</tr>
<tr>
<td>Mar ’16</td>
<td>benchmark suite determination</td>
</tr>
<tr>
<td>Apr ’16</td>
<td>benchmarks frozen</td>
</tr>
<tr>
<td>Apr ’16</td>
<td>RFP</td>
</tr>
<tr>
<td>June ’16</td>
<td>Award</td>
</tr>
</tbody>
</table>

KNL proposals achieved highest aggregate score on all performance metrics and sub-metrics.
Installation Timeline

May 13: 4 JLab R&D nodes built

Jun 21: Procurement award announced

Aug 15-18: Delivery and hardware installation
Aug 19–30: JLab installation of OS & software
 Benchmarking
 Acceptance testing

Sep 1: SciPhi-XVI (16p) Early Science running
Sep 15: JLab becomes an Intel® Parallel Computing Center

Oct 1: Production allocations begin (Saturday)
Oct 3: Upgrade option awarded (1st business day of FY17)
~Oct 28: Delivery of exercised FY17 upgrade option
Computing Hardware

200 Xeon Phi 7230
- 64 cores, 1.3GHz, 192GB RAM, 16GB MCDRAM
- 1 TB disk
- Omni-Path
- 256 threads
- 4 nodes in 2U

Total: 12,800 cores, 41 TB memory

Jobs run on a dedicated node or nodes
Allocation of 250M Jpsi core hours (FNAL USQCD reference machine)
 final adjustment ratio still to be made per final user code benchmarks

Oh! no console capability?! A first for us…
of course, use BMC interface
System configuration

Server Board: Intel S7200AP
BIOS: S72C610.86B.01.01.0190.080520162104 (08/05/2016)

CentOS 7.2, xppsl 1.4.1
 (xppsl 1.4.2 available 10/05/2016)

Before this BIOS and xppsl update, fans were at full blast!

Still, hearing protection required if working nearby
System configuration

• Kernel: 3.10.0-327.22.2.el7.xppsl_1.4.1.3272.x86_64
• openMPI:
 – openmpi-1.10.0-10.el7.x86_64
 – openmpi_intel_hfi-1.10.2-8.x86_64
 – openmpi_gcc-1.10.2-8.x86_64
 – openmpi_gcc_hfi-1.10.2-8.x86_64
 – openmpi_pgi_hfi-1.10.2-8.x86_64
• Mvapich2
 – mvapich2_gcc_hfi-2.1-4.x86_64
 – mvapich2_pgi_hfi-2.1-4.x86_64
 – mvapich2_intel_hfi-2.1-4.x86_64
 – mvapich2_gcc-2.1-4.x86_64
• Intel Parallel Studio
 – parallel_studio_xe_2016.3.067
 – parallel_studio_xe_2017
Memory options

16 GB MCDRAM (~4x as fast as DDR4)
 Flat – user addressable, distinct numa node
 Cache – memory side L3
 Hybrid – we’re not using now

Users can tag their jobs accordingly

We need a tool to be able to change nodes and reboot…
 syscfg
 (hwloc_dump_hwdata shows different settings?!)
Omni-Path Network

Spine : 3 64 port switches; Leaf switch uplinks in bundles of 6,6,4
for 256 nodes, 2 core switches consumed, 3rd support s 4 links to the file system plus 8 additional nodes with a little room to spare

32 nodes connect to a 48 port leaf switch
- nominally 2:1 oversubscribed, but effectively full bandwidth per node

One core can’t drive OPA at full bandwidth

/dev/hfi1 driver – use the correct one, or
 hfi_userinit: PSM2 and driver version mismatch
 Driver initialization failure on /dev/hfi1 (err=23)
 [3] MPI startup(): tmi fabric is not available and fallback fabric is not enabled

Managed OPA switch subnet manager stopped running several times; recommended for <100 nodes
so, installed subnet manager on 2 hosts
Filesystem Services

Nodes need to reach Lustre and legacy NFS on Infiniband…

LNet routers for Lustre
• a first for us
• Bought 2, added 2 from JLab hosts
• What configuration do we want?
 – 2 procured systems arrived with 2 OPA & 3 IB interfaces
 – Decided to use 1 OPA and 2 bonded IB
• Restart each Lustre OSS with new LNet config

IB / OPA IP routers for NFS
• Configured 2, from JLab hosts
Web view of 16p

https://lqcd.jlab.org/lqcd/lqcd_index.html#/
https://lqcd.jlab.org/lqcd/lqcd_index.html#allocation

LQCD Cluster Node Status
(Click each bar to get individual Node Status Information)

Phi Clusters

USQCD Project Allocation Usage (16-17)
(Core hours for each cluster are converted to '16-17' weight unit hours based upon measured relative performance)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Allocation*</th>
<th>Project Used Hours**</th>
<th>Annual Pace</th>
<th>Monthly Pace</th>
<th>Remaining Hours</th>
<th>Overused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrump</td>
<td>66,000,000</td>
<td>5,855,300</td>
<td>220%</td>
<td>220%</td>
<td>60,144,699</td>
<td>0</td>
</tr>
<tr>
<td>NPLQCDp</td>
<td>20,800,000</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>20,800,000</td>
<td>0</td>
</tr>
<tr>
<td>rhqbbarp</td>
<td>2,000,000</td>
<td>82,879</td>
<td>102%</td>
<td>102%</td>
<td>1,917,120</td>
<td>0</td>
</tr>
<tr>
<td>cedmpffp</td>
<td>14,000,000</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>14,000,000</td>
<td>0</td>
</tr>
<tr>
<td>thermop</td>
<td>31,000,000</td>
<td>6,377,390</td>
<td>510%</td>
<td>510%</td>
<td>24,622,609</td>
<td>0</td>
</tr>
<tr>
<td>muon</td>
<td>30,000,000</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>30,000,000</td>
<td>0</td>
</tr>
<tr>
<td>Delta</td>
<td>35,000,000</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>35,000,000</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>198,800,000</td>
<td>12,315,569</td>
<td>154%</td>
<td>154%</td>
<td>186,484,428</td>
<td>0</td>
</tr>
</tbody>
</table>
Observations

• Double check the power…
 – Our first HPL run tripped the single power panel
 – PDU reached >100 KW, can run at 135KW, 90% of rating, when nodes distributed across 2 panels

• HPL benchmark 329 TF; will rerun with rack 4

• 5 nodes of 200 have hardware errors
 – 3 MCDRAM
 – 1 bad DIMM slot
 – 1 won’t POST

• Transparent khugepaged problematic
 – turned off Oct 18 maintenance day; watching …
Still To Do…

- Install 4th rack of 64 nodes, including more power circuits in temp location
- Benchmark users’ USQCD codes relative to conventional cores
 - Currently assuming 3 Jpsi core hour, the reference for USQCD
- Bin nodes into fast/medium/slow so jobs land on consistently performant nodes (we’ve seen >10% spread)
- Automate cache/flat memory reboots based on job demands
- Improved automated monitoring, alarms and notification
- Move the cluster to its permanent home in the Data Center
- Upgrade existing clusters to CentOS 7?
- Continue to learn and upgrade based on our findings…
- Support more users/projects moving to JLab 16p
- Continue to share experiences with other KNL sites …
HPC BOF – Wednesday 1pm

Focus on sharing experiences between large sites and smaller sites
- Procurements
- Allocations
- Benchmarks
- Software
- Porting
- Lessons learned