
Renewal of Puppet for Australia-ATLAS
Sean Crosby

Goncalo Borges

Lucien Boland

Jeremy Hack



Australia-ATLAS services

• ATLAS Tier 2
– 100 WNs + Torque/Maui server

– DPM headnode + 16 storage nodes

– Regular EMI services (CE, BDII, APEL)

– perfSonar

• CoEPP services
– Public web servers, dokuwiki

– LDAP/Kerberos auth servers

• Tier 3
– UIs

– NFS /home

– CephFS /coepp/cephfs

• 250 nodes



History of configuration management

• Until 2013, cfengine2

– Scripts written by previous admins

– Covered SL5 services

• Lucien and I were not comfortable

– Didn’t cover everything

– Lots of hacks for bad packages or bugs fixed 
ages ago

– Basically called YAIM for most Grid services

• But no overwhelming reason to change

Along came SL6 however…



Choices, choices…

• Quattor

– Went to many EGI conferences, and was 

quite popular with French cloud

• Cfengine

– Didn’t really like syntax. Cfengine2 to 

cfengine3 was a big jump

• Puppet

– Spoke with Steve Traylen at a HEPIX, and 

CERN was just getting into it

– Lucien loves Ruby



Puppet basics

• Puppet is basically resources (file, service, 
package, exec, ssh_authorized_key,…) 
grouped into manifests and modules

• Puppet written in Ruby, and has its own DSL

• Facts are constants (OS version, IP address, 
hard drives etc) accessible to a Puppet run

• Hiera is a key/value lookup tool for 
configuration data, built to make Puppet better 
and let you set node-specific data without 
repeating yourself. (Puppet website)

• Forge is a Puppetlabs hosted community page 
where users can upload their own Puppet 
modules for others to use. CERN uploads most 
(all?) of their modules to here, as well as 
GitHub.



Original design

• Puppet 3.2/PuppetDB

1.5.2/mod_passenger/Puppet 

Dashboard

• All modules in single Git repository

• Hieradata in separate repository

• Environments were just branches of Git 

repo

• Git hooks



Original design

• Came from cfengine system of classifying 
nodes into groups (classes) for Nagios checks, 
common tasks
– Puppet Dashboard hostgroups with custom 

Puppet parser function to pull contents from 
MySQL

– Custom static Ruby Facter facts grouping hosts 
into host_group, host_type, location



Original design

• Use Dashboard hostgroups to populate 
Nagios hostgroups

– We did this due to slowness of exported 
resource compilation in Puppet 3.2



Original design

• Use Facter host_groups for Puppet 

manifests (e.g. iptables manifest)

• Use if statements for choices



Problems

• Single git repo made “safe” development 
harder
– Changing module to support new version of 

software, but keeping existing clients running 
involved branching full git repo

• Merging back was sometimes difficult due to many 
changes happening in main branch

• We wrote many modules before the 
Forge/CERNops was made
– Harder to integrate 3rd party modules due to 

dependencies (e.g. DPM puppet modules, 
VOMS, MySQL)

– Written in a “just get it done” way. Not very 
extensible or shareable



Problems

• Not every part of server was Puppeted

– Some packages installed in Kickstart

– Networking not configured (e.g. bonds, LACP, 
machines with static IP e.g. DHCP server)

– perfSonar has a small Puppet config applied 
(ssh keys, firewall)

– Xenservers also with a small Puppet config

– At the start, still relied on YAIM for some Grid 
services

• Some machines not Puppeted at all

– /home NFS server. We originally deemed it 
“too critical” to be Puppeted



Problems

• When a machine is not completely controlled 
by Puppet, it breeds a lack of confidence in 
server

– We did manual config to get Puppet servers up 
and running to accept Puppet connections

– Puppet servers haven’t been updated in 3 years 
because we don’t have complete confidence what 
was done to make them work

• Lots of steps can be missed when 
commissioning server

– Forget to add host to Puppet Dashboard 
hostgroup stops monitoring

– Forget to add host to Facter facts stop certain 
packages/iptables rules being added



Problems

• Harder to get other team members up to 

speed

– “Why isn’t this host joining the right Ganglia 

cluster”

• Were not following best practice

– Cool new features like auto Hiera lookup 

and structured data from Hiera were 

impossible for most of our modules without 

a complete rewrite



Impetus for change

• Moving virtualisation technology from 

Xenserver to KVM

– Reinstall Puppetserver on KVM?

– Could convert existing Puppetserver to 

KVM…

• Puppet 4 is coming

– We relied on node inheritance –

deprecated in Puppet 4

• Centos 7 servers

– The final kick for us to move and rewrite



Puppet 4 changes

• Lots of deprecations
– Node inheritance

– “import” for manifests

– Variables can’t start with capital letters

– Class names can’t have hyphens

– Updating array/hash values

– Ruby DSL

– Config file environments

– Facts no longer stringified

• Cool new features
– AIO packaging: newer version of Ruby – made 

exported resources so much faster

– EPP templates



Many “best” practices

– We searched around, including in textbooks 
and websites, for “best” practice

– Settled on a few golden rules
• Data is in Hiera

• Always use Puppet variable autolookup

• Default values for variables in module Hiera

• Module name should reflect package name (with 
few exceptions)

• Search Forge/CERNops first before writing (pick 
module with least dependencies)

• 1 module per Git repo (r10k)

• Roles/profiles

• ENC sets all node intrinsic values

• Puppet EVERYTHING, including Puppet



Puppet: A new way

• We created a set of bootstrap scripts, 

which just install puppet, run r10k, and 

enough config to then run puppet to 

install our puppet servers

• Implemented a separate CA server, to 

allow for easy scale up of Puppet 

servers

• Lots of our new modules are just 

copied/pasted from Forge



Puppet: A new way

• New, simple ENC

– Hiera based

– All “intrinsic” properties

– Easy to add more if needed



Puppet: A new way

• Better and simpler Git hooks



Puppet: A new way

• Simpler way to customise modules 
based on Facts

• Easier to customise/disable Nagios 
checks for hosts

– Old hostgroup model made it very difficult 
to disable a check for a specific host

• Module writing is actually easier

– No if statements, no edge cases



Summary

• Old Puppet worked, but was not optimal

• Centos 7 was last push for us to change

• “Best practices” are best for a reason

• New system is easier to commission a 

host, and easier to maintain

• We love the Forge – please share your 

modules!


