OSiRIS: One Year Update
Distributed Ceph and Software Defined Networking for Multi-Institutional Research

Shawn McKee
University of Michigan / ARC-TS
Michigan Institute for Computational Discovery and Engineering
October 19, 2016

- Project and participants overview
- Structural overview and site details
- Orchestration, monitoring and visualization
- Networking, NMAL, SDN

- Latency and Ceph - our experiments
- AAA infrastructure
- First science domains: ATLAS and Physical Ocean Modeling
OSiRIS (Open Storage Research InfraStructure) is one of 4 NSF CC*DNI DIBBs projects funded in 2015. OSiRIS is prototyping and evaluating a software-defined storage infrastructure, initially for our primary Michigan research universities, designed to support many science domains.

Our goal is to provide transparent, high-performance access to the same storage infrastructure from well-connected locations on any of our campuses.

By providing a single data infrastructure that supports computational access “in-place” we can meet many of the data-intensive and collaboration challenges faced by our research communities and enable them to easily undertake research collaborations beyond the border of their own universities.
Scientists get customized, optimized data interfaces for their multi-institutional data needs

Network topology and perfSONAR-based monitoring components ensure the distributed system can optimize its use of the network for performance and resiliency

Ceph provides seamless rebalancing and expansion of the storage

A single, scalable infrastructure is much easier to build and maintain

- Allows universities to reduce cost via economies-of-scale while better meeting the research needs of their campus

Eliminates isolated science data silos on campus:

- Data sharing, archiving, security and life-cycle management are feasible to implement and maintain with a single distributed service.
- Configuration for each research domain can be optimized for performance and resiliency.
OSiRIS is composed of scientists, computer engineers and technicians, network and storage researchers and information science professionals from University of Michigan / ARC-TS, Michigan State University, Wayne State University, and Indiana University (focusing on SDN and net-topology)

We have a wide-range of science stakeholders who have data collaboration and data analysis challenges to address within, between and beyond our campuses:

High-energy physics, High-Resolution Ocean Modeling, Degenerative Diseases, Biostatics and Bioinformatics, Population Studies, Genomics, Statistical Genetics and Aquatic Bio-Geochemistry
Ceph gives us a robust open source platform to host our multi-institutional science data

- **Self-healing and self-managing**
- Multiple data interfaces
- Rapid development supported by RedHat

Able to tune components to best meet specific needs

Software defined storage gives us more options for data lifecycle management automation

Sophisticated allocation mapping (CRUSH) to isolate, customize, optimize by science use case

Ceph overview:
https://umich.app.box.com/s/f8ftr82smlbuf5x8r256hay7660soafk
Ceph instances (mon, osd, rgw, mds) are all deployed with a puppet module.

Forked from original by Openstack: https://github.com/MI-OSiRIS/puppet-ceph

Simple example of using module to deploy MDS:

```yaml
ceph::key { "mds.${::hostname}"
   cluster => 'ceph',
   keyring_path => "/var/lib/ceph/mds/ceph-${::hostname}/keyring",
   secret => hiera("eyaml-encrypted-secret"),
   user => 'ceph',
   group => 'ceph'
}

ceph::mds { "$::hostname" :
   cluster => "ceph"  # ceph and module default, but non-default names work as well
}
```
Site View

OSiRIS Data Infrastructure Building Block

- **OSiRIS Campus**: 10 to 100G, More than one path, More than one wavelength
- **Campus Network**: 10 to 100G
- **Wide-Area Network In Chicago**: 10G to 4x40G

GlobusOnline Data Transfer Node: PowerEdge R630

Ceph OSD Node (1 to 10 nodes)
- NVMe x 4
- 400-800GB Each
- Head node has 384GB of ram, 40 logical processors, up to 4 NVMe for journaling, 4x25G NICs and two dual port SAS HBAs to connect the JBOD

PowerVault MD3060e: JBOD holds 60 SAS 8TB disks

Virtualization Node (2 nodes)
- PowerEdge R630
- Libvirt Hypervisor - R630, 256G ram, 2x 800G NVMe (md raid1), 4x1TB (hw raid-10), 2x25G NIC

PowerEdge R630
- HW RAID-10
- 1TB SAS
- MD RAID-1
- 800GB NVMe

Ceph Mon and MDS VMs will be hosted here. Will also host OMD monitoring, development VMs, and science domain-specific VMs as required.
Deploying and extending our infrastructure relies heavily on orchestration with **Puppet and Foreman**.

We can easily deploy bare-metal or VMs at any of the three sites and have services configured correctly from the first boot.

Except: OSD activation requires a manual step.

Open vSwitch (scripted setup)
A resilient logging infrastructure is important to understand problems and long-term trends.

The 3 node arrangement means we are not reliant on any one or even two sites being online to continue collecting logs.

Ceph cluster logs give insights into cluster performance and health we can visualize with Kibana.
filter {
 if [type] == "rgwlog" {

 grok {
 patterns_dir => ["/etc/logstash/patterns"]
 match => [

 # grab the client doing rgw transfer from civetweb log

 # pickup more generic logs
 "message", "%{TIMESTAMP_ISO8601:log_timestamp} %{GREEDYDATA}"

 add_field => ["received_at", "%{@timestamp}"]
 }

date {
 match => ["log_timestamp", "yyyy-MM-dd HH:mm:ss.SSSSSS", "ISO8601"]
 remove_field => ["log_timestamp"]
}
We want insight into each layer of our architecture - systems, storage, network, and Ceph itself.

We’ve been able to leverage collectd and its large collection of plugins.

All of our systems feed data to instances of Influxdb and we can plot any series of data with Grafana (examples to follow).
Collectd-ceph plugin interfaces with daemon admin sockets

We configure the appropriate sockets by setting puppet-collectd module params at the appropriate level in hiera - either by ‘role’ determined from xx-role type hostnames or at the node level (osd are different every node).

um-stor01.osris.org.yaml:

collectd::plugin::ceph::daemons: ['ceph-osd.0','ceph-osd.1'] (really many more)

specified for all nodes matching a ceph role (puppet auto parameter lookup)
include collectd::plugin::ceph

Net result is this config on /etc/collect.d/10-ceph.conf (repeated for all daemons in array)
<Daemon "ceph-osd.0">
 SocketPath "/var/run/ceph/ceph-osd.0.asok"
</Daemon>
Templated grafana dashboards useful to explore stats and/or make permanent dashboards more flexible.

Grafana tag queries used here to select all ceph instances by host:
SHOW TAG VALUES FROM "ceph_value" WITH KEY = "host"
SHOW TAG VALUES FROM "ceph_value" WITH KEY = "instance"
WHERE host = '$tag'

This is just a dev playground - panels are incorporated in more permanent dashboards (seen in other slides)
InfluxDB Continuous Queries constantly resample data into longer averages stored in Retention Policies that retain data longer as it is downsampled more.

Initial inputs are kept 3 months, 1 minute average for 6 months, 5 minute average for 1 year, etc to 1 day average kept forever.

We use template variables in grafana to choose the RP for visualization (no automatic switching)

CREATE RETENTION POLICY "six_months" ON "collectd" DURATION 26w
CREATE CONTINUOUS QUERY one_min_mean ON collectd
BEGIN
SELECT mean(value) AS value INTO collectd.six_months.:MEASUREMENT FROM collectd."default"./.* GROUP BY time(1m)
END
Because networks underlie distributed cyberinfrastructure, monitoring their behavior is very important.

The research and education networks have developed perfSONAR as an extensible infrastructure to measure and debug networks (http://www.perfsonar.net).

The CC*DNI DIBBs program recognized this and required the incorporation of perfSONAR as part of any proposal.

For OSiRIS, we were well positioned since one of our PIs co-leads the worldwide perfSONAR monitoring effort for the LHC community: https://twiki.cern.ch/twiki/bin/view/LCG/NetworkTransferMetrics.

We are working to extend perfSONAR to enable the discovery of all network paths that exist between instances.

SDN can then be used to optimize how those paths are used for OSiRIS.
The OSiRIS Network Management Abstraction Layer is a key part of managing our network as a dynamic resource.

Captures site topology and routing information in UNIS from multiple sources: SNMP, LLDP, sflow, SDN controllers, and existing topology and looking glass services.

Package and deploy conflict-free measurement scheduler (HELM) along with measurement agents (Basic Lightweight Periscope Probe - BLiPP).

Correlate long-term performance measurements with passive metrics.

Defining best-practices for SDN controller and reactive agent deployments within OSiRIS.
Part of our project is also testing the viable limits of a single Ceph instance.

We did a variety of scenarios - at left is a plot of gradually increasing latency to a single storage block during recovery to another node.

At 320 ms there are major problems.

Things don’t really recover fully until we back off to 80ms...likely 80ms is the max safe latency.

Will test at SC16!!

OSIRIS HEPiX Fall 2016 - Slide 18
ATLAS will use the OSiRIS Ceph S3 gateway to read/write single events.

Allows leveraging transient computing resources - lost job means only 1 lost event.

Authentication is still in the early stages - doesn’t yet tie in with ATLAS authentication.

Plots of running test event code.
High-level: InCommon participants use their “local” identity and computing resources. VOs self-organize and manage members and roles via OSiRIS services. OSiRIS/Ceph respect membership and roles.

- Session and affiliation data are first pulled into OSiRIS from SAML2 Assertions made by IdPs at configured or InCommon participant organizations.
- Valid SAML2 sessions are combined with OSiRIS Access Assertions to create Bearer Tokens that users may use with OSiRIS’ wide array of interfaces / use cases.
Authentication and Authorization

Native Access of OSIRIS Resources
Michael Gregorowicz
(c) 2016 Wayne State University

Legend
- ORT Transfer
- OAT Transfer
- SAML2 Auth
- Ceph Key + Native Session

Client Machine
- mount: ceph
- mount, osiris

Native Ceph Interfaces
- CephMon
- ceph config
- key cache

Gate Keep

OSIRIS Central Authority
- Mgmt Interface
- CM Interface
- Shib SP

DAA Storage and Issuance Interface

Db

User IdP

InCommon Metadata
Still in the early stages of engagement

The Naval Research Lab is collaborating with researchers at UM to share their high-resolution ocean models with the broader community

- This data is not classified but is stored on Navy computers that are not easily accessible to many researchers

Discussions are underway to determine a suitable interface and transfer method to put this data into OSiRIS for wider use

We are exploring S3/RGW with objects mapped to a URL to provide high-level organization of the objects (e.g., the URL defines the type/location of the object data)
The OSiRIS project goal is enable scientists to collaborate on data easily and without (re)building their own infrastructure.

The science domains mentioned all want to be able to directly work with their data without having to move it to their compute clusters, transform it and move results back.

Each science domain has different requirements about what is important for their storage use-cases: capacity, I/O capability, throughput and resiliency. **OSiRIS** has lots of ways to tune for these attributes.
Questions or comments?

We gratefully acknowledge the support of the National Science Foundation. Grant information at https://nsf.gov/awardsearch/showAward?AWD_ID=1541335&HistoricalAwards=false
For more information about OSiRIS see http://www.osris.org

For more information on our network and system tunings for Ceph please see http://www.osris.org/performance/tuning.html

More information on latency testing:

Monitoring and logging:
http://www.osris.org/components/monitoring.html

NMAL:
http://www.osris.org/nmal

AAA Framework:
https://github.com/MI-OSiRIS/aa_services/blob/master/doc/osiris_access_assertions.md
Some conclusions on Ceph and latency (also see http://www.osris.org/performance/latency)

When latency to any OSD host hits 160ms RTT, throughput and ops are effectively 0. Before this point we see a steady and predictable decrease from the maximum but still usable.

Max RTT latency to any given OSD is probably about 80ms. Beyond this recovery ops may not be reliable.

Ceph Monitors are not particularly sensitive to latency. At up to 800ms RTT to one monitor there were not any issues and cluster ops, including mon ops such as creating auth keys, were fine. Somewhat slower for some interactive ops.

We didn’t try to adjust any timeouts, etc upward to compensate, but this may be possible.
we need an ifb device to set a delay on ingress packets
modprobe ifb # load 'intermediate functional block device'
ip link set dev ifb0 up
tc qdisc add dev eth0 ingress
tc filter add dev eth0 parent ffff:
 protocol ip u32 match u32 0 0 flowid 1:1 action mirred egress
 redirect dev ifb0

now set the netem delay filter on ingress/egress
last 3 params are delay, variation, and correlation of delay variation
tc qdisc add dev ifb0 root netem delay 10ms 10 25%
tc qdisc add dev eth0 root netem delay 10ms 10 25%
Authentication and Authorization

OSiRIS Access Assertions: Overview and Lifecycle

Central Authority

Authenticated Actor (AA) Asks Central Authority (CA) to generate an OSiRIS Access Request (OAR) for a given resource on their behalf.

CA chooses a Resource Authority (RA), produces and sends an OAR on behalf of the AA based on Central OSiRIS affiliation rules/data.

The OAG can contain information that is opaque to the Authenticated Actor and CA such as passwords and de-provisioning scripts/instructions.

The OAG's signature is checked and is added to a final credential, the OSiRIS Access Assertion (OAA) that when combined with a current and valid InCommon session is usable for authentication into and de-provisioning of any resource provided by any participating resource provider. The OAA is stored on the CA on behalf of the AA until it expires or becomes otherwise invalid.

Resource Authority

Authenticated Actor

OAR

RA evaluates the OAR to decide on handling it and what actions need to be taken. **provisioning** and/or **configuration** should occur here.

If the OAR checks out / meets RA specific affiliation rules, the RA generates and sends an OSiRIS Access Grant (OAG) to the CA.
Scientific Linux 7.2
Ceph 10.2.3 (aka Jewel)
Puppet 3.8.7 with future parser enabled
Foreman 1.10.4
Influxdb 1.0.2
Grafana 3.0.4 (bc 3.1.1 had a stopper templating bug for us, waiting for 3.1.2 with bugfix)
Elasticsearch 2.4.1
Kibana 4.5.4
Logstash 2.3.4
Filebeat 1.3.1 (client log shipper)
Check_mk raw/client 1.2.6p16
openvswitch 2.5.0 (RPM built locally)
mlnx_en drivers 3.3 (RPMs built locally with nightly check if need to build vs new kernel versions in SL or ELrepo)

On xfer gateway hosts we use kernel-lt-4.4.22 from ELrepo so we can mount cephfs in-kernel (or whatever is latest, we don't pin to any one version). Theoretically this is so they have the fastest possible access to CephFS for Globus transfers. When Redhat mainlines CephFS support into the stock kernel we'll stop doing this.

Most of the libvirt/qemu tools from stock SL repos, these exceptions were pulled in from the CentOS Virt Special Interest Group repository (SIG). These updated packages let us take live snapshots and live merge changes back into those snapshots later. The purpose is live backups of running VMs into our own fuse mounted CephFS (maybe we get credibility points for that since nobody else is using our cluster yet).

repo:
http://mirror.centos.org/centos-7/7/virt/$basearch/kvm-common/
SIG Page:
https://wiki.centos.org/SpecialInterestGroup/Virtualization

gemu-img-ev 2.3.0-31.el7.16.1
gemu-kvm-common-ev 2.3.0-31.el7.16.1
gemu-kvm-ev 2.3.0-31.el7.16.1