
Andrew Lahiff, Ian Collier
STFC, Rutherford Appleton Laboratory

HEPiX Fall 2016 Workshop, LBNL



Overview

• Introduction

• Mesos

– Creating images

– Private docker registry

– Grid Worker nodes

– Running production services

• Commercial clouds

• Summary

2



Introduction

• Investigating ways to manage existing services & potentially provide 
more services with less effort

• Container orchestration has the potential to provide an environment 
where:

– the infrastructure itself is

• flexible

• fault-tolerant

• scalable

– services are

• quickly & easily deployable, easily updated

• self-healing

• elastic & auto-scaling

• multi-tenant

3



Introduction

• Using Apache Mesos

– Marathon framework for managing long-running services

– Consul for service discovery

– cAdvisor, InfluxDB, Grafana for metrics

– Filebeat, Logstash, Elasticsearch & Kibana for logging

• More information in previous HEPiX meetings

Framework A

LEADER

STANDBY STANDBY

Scheduler

Framework B

Scheduler

Mesos Master quorum

ZK

ZK ZK

Master

Master Master

OFFER

OFFER

Framework A

TASK

Executor

Agent 1

Framework B

TASK

Executor

Agent N

..
.

Mesos agents provide

resources to the Mesos

master

Mesos master offers

resources to frameworks

Frameworks decide what

offers to accept & what to

do with them

4



Creating images

• Container images are the basic starting point for applications

• Currently creating images “by hand” from Dockerfiles, then manually 
uploading to a private Docker registry

• Work in progress on leveraging HashiCorp Packer

– build both VM & container images from Aquilon, our 
configuration management system

– automatically

• upload images to a private Docker registry

• carry out vulnerability analyses of images (e.g. CoreOS Clair)

• potentially also deploy to a test environment

Aquilon Packer

Docker registry

OpenStack 

Glance

vulnerability 

analysis
hook

hook

5



Private Docker registry

• First attempt

– single VM running Docker registry container

– storage backend: volume bind-mounted from the VM

• Security

– httpd providing SSL + simple authn/authz

– investigating authorization servers for more advanced 
features (e.g. LDAP, groups, ...)

• docker_auth

• SUSE Portus

• Problems with this simple setup

– it’s a single point of failure

– it’s a network bottleneck

6



Private Docker registry

• Alternative: use Ceph as the storage backend with Swift 
gateway

– Central registry with read/write access

– Read-only registries on every Mesos agent

• it’s very lightweight

• when images are pulled the network traffic comes directly 
from the Swift gateway to the appropriate Mesos agent

Swift Cephhttpd registry

Docker engine

r/o 

registry

Docker engine

Mesos agents

Registry with r/w access

7



Private Docker registry

• Tried starting 200 instances of a container with 1 GB 
image size

– result using a single registry: the registry crashes

• Everything is fine when using a “distributed” registry:

1 GB image x 200 instances
(image pulled for every single instance)

15 MB image x 4000 instances
(image pulled for every single instance)

plots use data with 1-minute time resoulution 8



Mesos at larger scales

• Until recently have only had a small cluster (256 cores)

• How are things at larger scales?

– Now have 164 x 32 cores, 84 x 16 cores (all bare metal)

– No problems found as a result of having a larger cluster

• Load on Mesos masters

– With just some relatively-static long-running services resource 
usage is low

– When large numbers of containers are being created regularly 
there is more load visible (see next slide)

• ZooKeeper

– Known to require fast disk

– Have noticed that on 2 of our 3 Hyper-V virtualization clusters 
disk i/o not fast enough (warnings about fsyncs taking too long)

9



Mesos at larger scales

• Resource usage of leading Mesos master under higher load

– running containers which live for a random time < 60s, around 
2000 simultaneously

– over 2 million containers created & destroyed over a few hours

Large numbers of

containers being

continually created

Long-running

services only

10



Generic compute resources

• Currently have separate cloud & batch resources

– however for ~ 1.5 years our batch system has made opportunistic 
use of free resources in our private cloud

• worker nodes running on virtual machines

– but no way for the cloud to make use of idle batch resources

• Investigating whether we can have a generic set of machines which 
can be used for

– worker nodes

– OpenStack hypervisors

– potentially other compute activities (e.g. Spark)

– running services

• Can we move away from the idea of resources partitioned into 
dedicated silos for different uses?

11



Grid Worker nodes

• Investigating running HTCondor worker nodes on Mesos

– Existing production HTCondor central managers & ARC CEs

– Running on Mesos

• worker nodes

• squids

• Container management

– Marathon for squids

• autoscaling based on request rate

– A custom framework for worker nodes

• creates worker node containers as needed

• Why not Marathon? Need to be able to scale down & perform 
rolling upgrades without killing jobs

12



Grid Worker nodes

• CVMFS & condor_startd inside the container

– host doesn’t need anything at all related to worker nodes 
installed

– allows us to run as many worker nodes as required without 
having to dedicate a set of resources configured as “WLCG worker 
nodes”

• Each job

– runs in it’s own CPU & memory cgroups

nested in the worker node container

– has it’s own PID & mount namespace

• Container exits if there has been no work for a

specified duration

condor_startd

job
slot@1_1

worker node container

...

CVMFS

job
slot@1_2

13



Grid Worker nodes

Example of recent tests running jobs from all 4 LHC VOs

For traceability

• information from Mesos made 

available in startd ClassAds (task ID, 

image name, ...)

• also added to job ClassAds

Therefore for every HTCondor

job we can identify e.g.

• host it ran on

• the Mesos task ID

• container ID

• image used

and can easily find the HTCondor & 

glexec logs

(even if the container is no 

longer running)

14



Grid Worker nodes

Squids running on Mesos for CVMFS (all VOs), Frontier (CMS)

Number of squids; each colour

corresponds to a unique task

- can click a button to create a new squid and/or 

use auto-scaling

- adding a new squid with our traditional 

infrastructure involves surprising amount of 

manual work

Application metrics

-exposed by each container via http

-collected by cAdvisor

-stored in InfluxDB

New squids automatically used by CVMFS &

Frontier as they are created without any config

files being updated or submitting tickets to

request DNS changes

15



Other benefits

Container orchestration facilitates increased automation & higher service 
quality – partly because it requires automated solutions in areas where 
we have relied on (got away with) manual effort:

– Monitoring

• aggregrate metrics dynamically using metadata

• historically we have used hardwired lists of hosts

– Logging

• More dynamic central logging (e.g. ELK) becomes (almost) essential

– Health checks

• need functional tests for each application

• historically many of our grid services have copious Nagios checks on 
hosts but less emphasis on proper functional tests

– Secrets

• need to properly store & distribute secrets securely

• historically we have managed distributing secrets by hand
16



Running production services

• How can our current production services benefit from this 
approach to service management?

– Issues are “cultural”, not technical

– A significant change in philosophy

– Hard to approach using our change management process 

My service always runs on the same

machine & it has a sticker!

My service is being managed by software

& is running somewhere in here...

17



Running production services

• Have to meet high SLAs

– Any move away from a tried, tested and trusted approach 
viewed with understandable skepticism

– Tier 1 evolution until now – virtualisation, config 
management – make it easier to do the same thing better 

– Here the approach is radically different

• Our configuration management system optimised for 
‘static’ hosts – working on better support for:

– creating container images

– configuration in Marathon

• Team not yet familiar with how to architect their services 
in ways suitable for container orchestration

– e.g. used to every host being a ‘pet’ 18



Running production services
Need places to try things out
• INDIGO DataCloud

– STFC has funded effort for pilot deployments

– Software is released as Docker containers

– The INDIGO DataCloud PaaS itself makes use of Mesos and 
Marathon

• Will deploy pilot services at RAL using Mesos

– Gives us operational experience running externally-visible 
services in a production setting

– example: APEL accounting service

• Build on that experience

– Consider running new services in containers before 
migrating existing production services 19



Commercial clouds

Related work, an activity part of the RCUK Cloud Working Group

• Most HEP activity on commercial clouds has involved

– cloud provider specific APIs

• Nova, EC2, Azure, GCE, ...

– and/or cloud provider specific services

• Alternative approach

– use Kubernetes as a way of providing portability between 
on-premise resources & multiple commercial clouds

– use a single (open-source) API to run your work on multiple 
commercial clouds

• Have been using Google & Azure, soon AWS

– have successfully run CMS jobs on Google & Azure

20



Summary & future plans

• The use of containers & container orchestration has many benefits 
compared to our existing approach

– potentially higher availability with less effort & higher resource 
utilization – all essential to meet our strategic goals

• Future plans include

– increased integration with our configuration management system

• images created by Packer from configuration in Aquilon

– use Ceph to allow containers to have persistent storage

– investigate running OpenStack hypervisors in containers

• will allow us to have cloud & batch sharing the same 
resources

– contributions to INDIGO DataCloud & similar projects

• running pilot services on Mesos

21



Questions?

22


