### CSNS Computing Environment Based on OpenStack



Yakang Li CSNS, Branch of IHEP HEPiX 2016 Fall, LBNL









#### About CSNS

- Accelerator-based neutron source
- Designed to provide multidiscipline research platforms with neutron scattering
- Operated by the Institute of High Energy Physics, CAS
- Located at Dongguan in Guangdong province of China
- Planed for operation in 2018





#### **About CSNS**

- 80-MeV H<sup>-</sup> Linac
- 1.6-GeV proton rapid cycling synchrotron (RCS)
- 25 Hz repetition rate
- tungsten target station
- 3 initial spectrometers



50keV 3 MeV



**Data Processing** 



#### **CSNS Data Flow & Storage Policy**





#### Scenarios & Requirements(1)





#### **Scenarios & Requirements(2)**







#### **Computing Environment based on OpenStack**





#### **Research and development**





#### **Unified Authentication**

- Existing intergration schema doesn't meet the requirement
  - All stores in Idap
  - Too much change to Idap
- Loosely coupled schema
  - Local user and common user
  - For common users , only username and password are authencated by Idap service
  - Other information will be authenticated and authorized through keystone local DB





#### Network

- Virtual Network
  - Disable L3-agent
  - Replace virtual router with physical gateway
  - VMs directly connecte to the trunk mode switch



- To ensure the performance and stability of the network
- To achieve seamless communication directly with local network



#### Images & instances

- Images storage
  - Stored in glusterfs ssd volume
- Cloud-init
  - Initialize instances at boot time
  - Set an instance hostname
  - Generate instance ssh private keys
  - Automatically register in puppet, DNS, etc
- Live Migration
  - All instances shared storage with glusterfs volume
  - Completed within a few seconds
  - Instance will not stop in the migration process





Page 12



#### **Distributed Messaging System**

- **RPC Messaging is critical for OpenStack**
- Default Messaging System
  - RabbitMQ
- Problems
  - single point failure
  - Difficult to scale out

# RabbitMQ

How to implement a broker-less architecture for OpenStack RPC





#### **Distributed Messaging System**



ZeroMQ is a high performance asynchronous messaging library aimed at used in scalable distributed or concurrent applications.



#### **Distributed Messaging System**



Source: Going brokerless, the transition from gpid to 0mq.

each host needs to listen to a certain TCP port for incoming connections and directly connect to other hosts simultaneously



zeroMQ Receiver running on every component



#### Dashboard

| <b>⑧</b> 中子云 |                                         |                         |        |                         |                              |          | О           | oct 2nd undefined 20 | )16 admin v            |
|--------------|-----------------------------------------|-------------------------|--------|-------------------------|------------------------------|----------|-------------|----------------------|------------------------|
| 🖀 Overview   | Overview                                |                         |        |                         |                              |          |             |                      |                        |
| 🖵 Compute    | Physical Resource Host Name 6 ERROR 0   |                         |        |                         | Service Status(Error/Normal) |          |             |                      |                        |
| 🖨 Storage    | 11.25%                                  | CPU(Core)               | 10.92% | Ram(GB)                 | 13.04%                       | Ca       | alc         | 35.71%               | Network                |
| Security     |                                         | 21/240                  |        | 33/303                  |                              | رد       | 25          |                      | 3/14                   |
| 😋 System     | 0%                                      | Local<br>Storage(GB)    | Na%    | Floating IP<br>0/0      | 66.66%                       | Blo      | ock<br>rage |                      |                        |
| Users Users  | Virtual Resource Total 10 Tenant ERROR1 |                         |        | Operate Logs            |                              |          |             | More>>               |                        |
|              |                                         | Virtaul                 |        | Switcher                | User<br>Name                 | Operater | Туре        | Result               | Time                   |
|              |                                         | ERROR : 0               |        | ERROR : 0               | test                         | Create   | instances   | s Success            | 2016-09-28<br>17:29:18 |
|              |                                         | Router                  |        | Loadbalancers           | test                         | Start    | instances   | s Success            | 2016-09-27<br>14:06:42 |
|              |                                         | NORMAL : 0<br>ERROR : 0 |        | NORMAL : 0<br>ERROR : 0 | test                         | Stop     | instances   | s Success            | 2016-09-27<br>14:05:57 |



#### Dashboard

- RealTime Notification(polling mode) -> WebSocket
  Push
- Use socket.io running inside a NodeJS loop.
- A high performance websocket (RFC 6455) implementation has been added
- Using Redis as a message queue.
- Two instances of a uWSGI server:
  - one to handle normal HTTP requests for Django
  - one to handle WebSocket requests



#### Summary

- OpenStack and virtualization technology are good solution according to the computing scenarios and requirements of CSNS;
- Computing environment based on OpenStack is deployed and running well;
- Some R&D points are made from the aspects of unified authentication, network, messaging system, etc;
- More advices, suggestions and helps are strongly expected

# Thank You !

## liyk@ihep.ac.cn CSNS

