



## Generation of an ultrashort GeV proton bunch in an instability-free regime by a single-cycle laser pulse

M.L.Zhou<sup>1,2</sup>, X.Q Yan<sup>1,3</sup>, G. Mourou<sup>4</sup>, J. A. Wheeler<sup>4</sup>, J. H. Bin<sup>2</sup>, J. Schreiber<sup>2</sup>, T.Tajima<sup>2,4,5</sup>

 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
Fakultät für Physik, Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China 4 DER-IZEST, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Department of Physics and Astronomy, UC Irvine, Irvine, California 92697, USA

6-7 July 2016 ELI-NP Magurele - Romania







- 1. Motivation and challenges of proton/ion acceleration
- 2. Generation of proton beam in an instabilityfree regime by a single-cycle laser pulse
- 3. Summary



## Motivation

#### Laser ion acceleration experiments data



Maximum proton energy from laser irradiated solid targets as a function of the laser irradiance and for three ranges of pulse durations, reporting experiments up to 2008.

Borghesi, M., et al., Plasma Phys. Controlled Fusion 50,124040(2008)

#### Heavy Ion Therapy Center (HIT) in Heidelberg



Th. Haberer et al., Radiother. Oncol. **73**(2), 186 (2004). Reviews of Accelerator Science and Technology Vol. 2 201–228 **(2009)** 







## Ion acceleration mechanisms



### TNSA(target normal sheath acceleration)



Large divergence

Energy spread: ~100%

Low conversion efficiency



Ion acceleration mechanisms



## RPA (radiation pressure acceleration)

Sailboat







T. Esirkepov, et al., PRL Vol. 92, No. 17 (2004)



### Sail broken by "violent storm" of laser



Hole boring and *Instabilities* are not gentle breeze



Klimo et al, Phys. Rev. ST AB 11, 031301 (2008)





M.Chen et al, PoP, 15, 113103, 2008



X.Yan, et al., PRL, 103, 135001, (2009)

A P L Robinson, et al, New J. Phys. 10.1(2008)







# 1. Motivation and challenges of proton/ion acceleration

- 2. Generation of proton beam in an instabilityfree regime by a single-cycle laser pulse
- 3. Summary





### Single Cycle Compression of High Energy Pulse: History









G. Mourou, S. Mironov, E. Khazanov and A. Sergeev, Single cycle thin film compressor opening the door to Zeptosecond-Exawatt Physics , Eur. Phys. J. Special Topics, 223, 1181(2014)





# The schematic view of single cycle pulse ion acceleration regime





#### The evolution of Transverse electric field electrons density proton density





## lack of instabilities!

the electrons do not spread out in a short time, but generate a much **compressed leading slice** 

a thin and coherent proton slice forms behind the electron layer



#### particle density longitudinal electric field transverse electric field





Acceleration distance: ~60um



#### Proton phase space and spectrum





The thickness of the isolated central slice is no more than 1 um, an ultrashort proton bunch corresponding to a few fs.



## TNSA、 RPA and our regime









- With a single cycle pulse and simple thin planar foil, the acceleration structure is stable, avoiding transverse instabilities, which is the bottle neck happened in RPA.
- the optimal value of  $\sigma/a$  is much smaller (0.1) than the traditional value, more efficient acceleration!
- Obtain a quite short protons pulse(less than 1 micrometer).
- Such proton beams could be used in proton cancer therapy or ADS.





## Thanks for your attention