

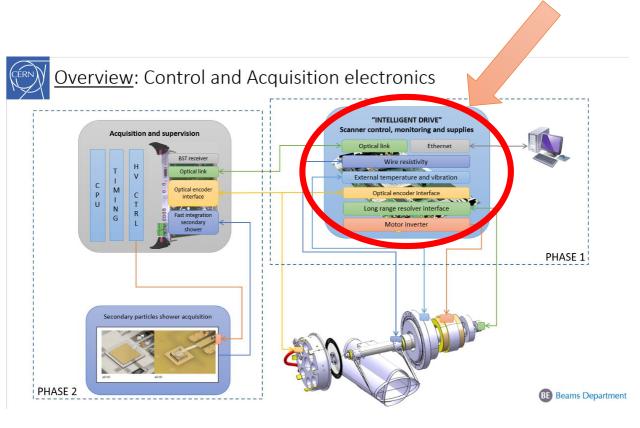
Investigation on the digital controller for the BWS

Beam wire scanner meeting - 19.05.2016

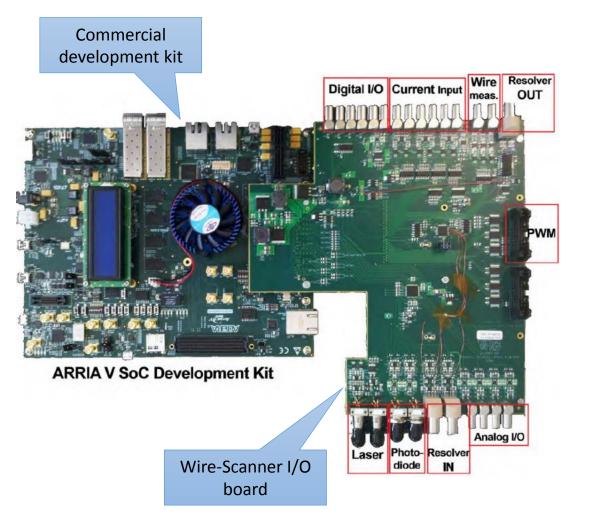
J. Emery & P. Andersson

Introduction

Context of this presentation:
 BI management requested to have technical details on implementation


options for the "intelligent drive"

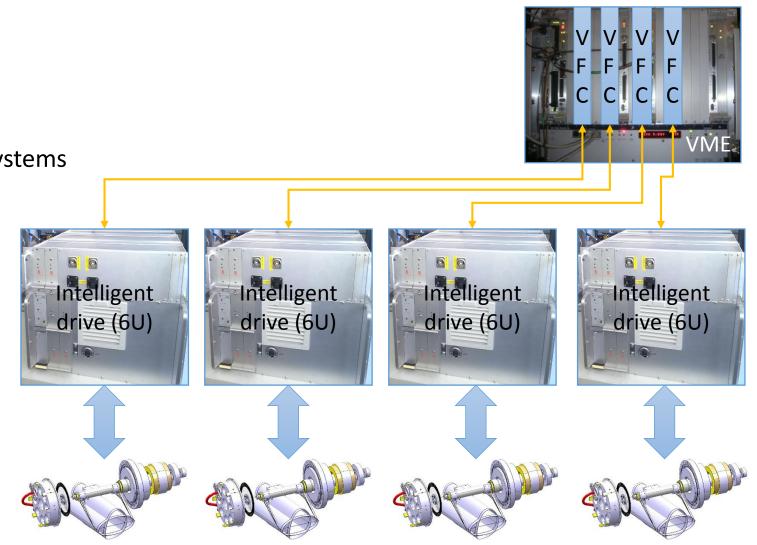
- Goals of this presentation:
- 1) Provide a sensible overview of options to build final electronics
- 2) Discuss the pro and cons for each of them
- 3) List some considerations on FPGA & boards
- 4) Recommend options based on various constraints

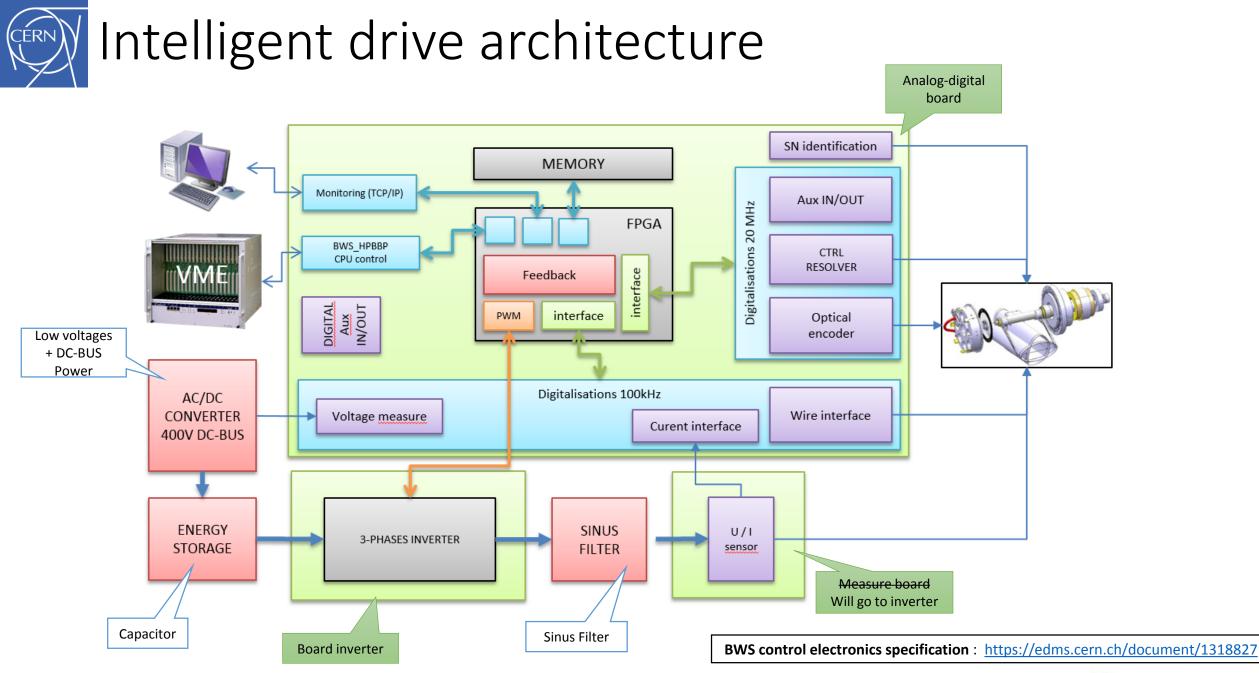

- Focus on the Intelligent drive electronics
- Technical presentation
- Target installation of these drives
- Space in the drive, Power requirement, EMI and measurements
- Options investigated
- FPGA resources, CPU power, design process, DDR
- BWS Firmware architecture and status

Three options for the digital platform

- Option 1:
 - Standalone VME board + custom mezzanine
 - Use of the VFC in standalone mode
 - Dedicated analog/optical mezzanine
- Option 2:
- Combined analogue-digital board
 Use the FPGA reference design (Altera)
 Add dedicated analog/optical circuits
 Combine the 2 boards we have today

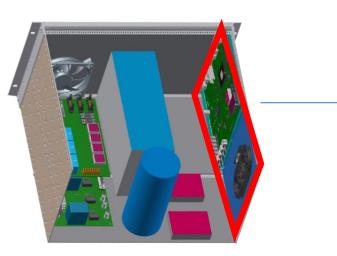
- Option 3: Starter-kit + mezzanine
 - Use Arria V SoC Dev kit
 - Dedicated analog/optical mezzanine

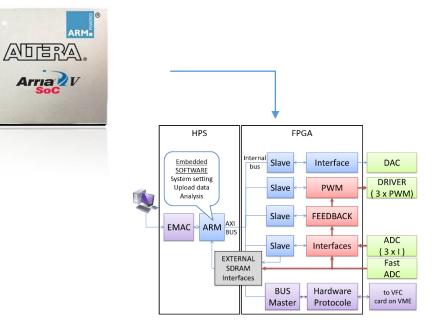




Scanner control architecture

- One intelligent drive (ID) per scanner
 - avoids multiplexing
 - constant monitoring/control
 - allow parallel scans
 - But imply more control and acquisition systems
- Deported processing from VME to ID
- Local monitoring and fault diagnostics
- One VME crate for multiple scanners
 Number depends on CPU-Memory load
- So we try to minimize the ID size
- Will still require more space than current installation: (PSB: 3 racks instead of 1)

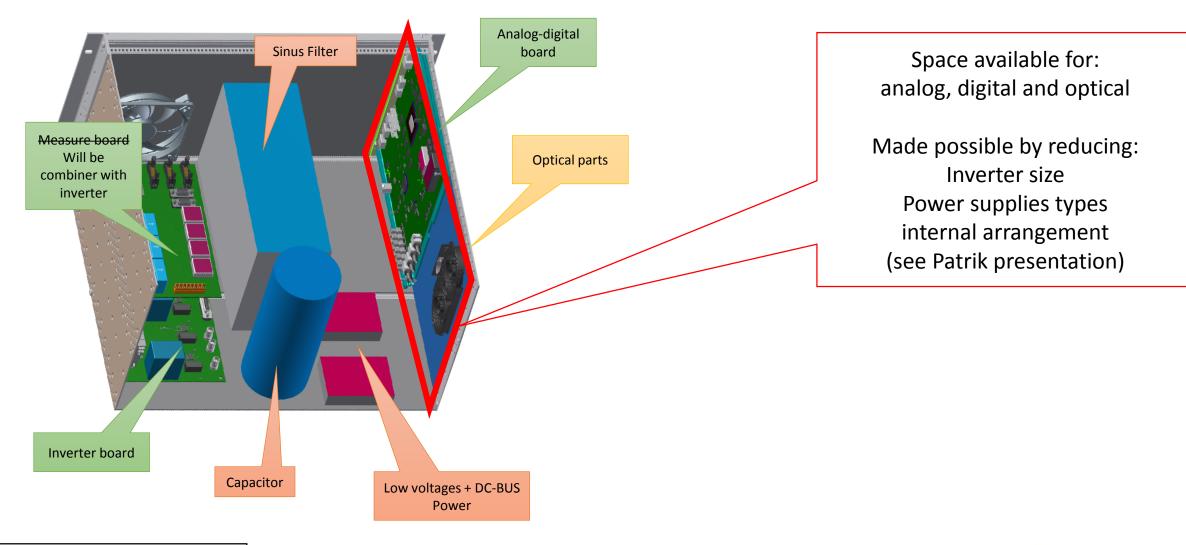




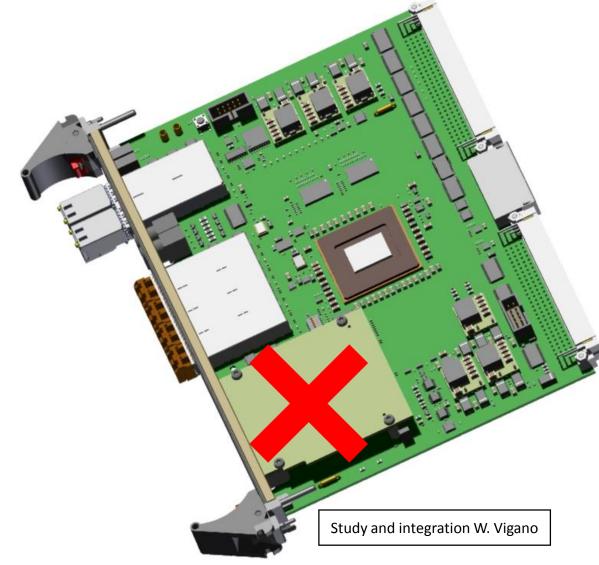
List of selection criteria

- **Board realisation** ullet
 - 1) Boards size

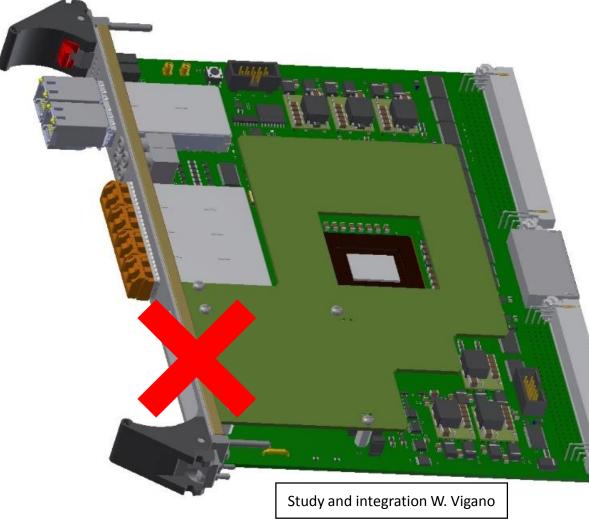
 - 2) Powering requirement3) Cabling and EMI protection
- Digital architecture 1) FPGA internal resources **FPGA** interconnects
 - 3) External memory
- Design process ulletTestability Code reuse 2 Methodology



Space availability for the board in ID


<u>Board realisation</u>
1) Boards size
2) Powering requirements
3) Cabling and EMI protection

<u>Board realisation</u>1) Boards size2) Powering requirements3) Cabling and EMI protection


- 1. Standard VFC + standard mezzanine
- Missing board space for components

Option 1: VFC + MEZZANINE

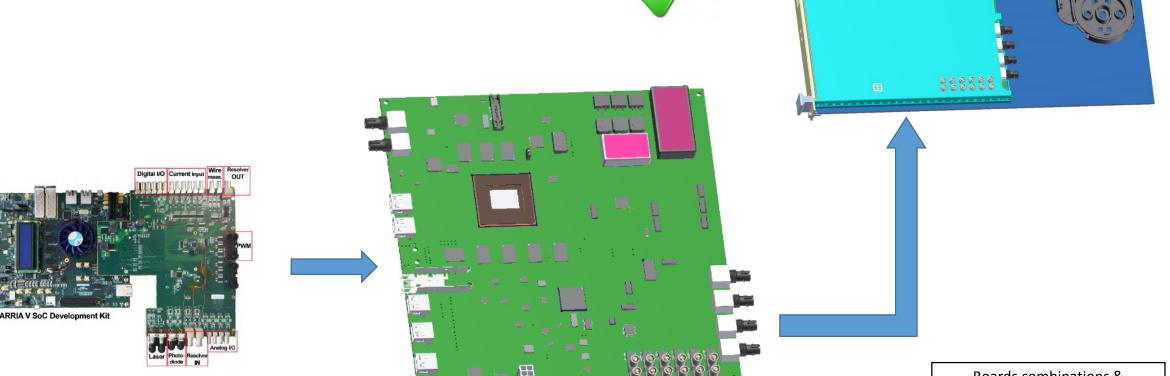
<u>Board realisation</u>
1) Boards size
2) Powering requirements
3) Cabling and EMI protection

2. Standard VFC + maximized mezzanine

• Missing space for the optical components

Option 1: VFC + MEZZANINE

Board realisation

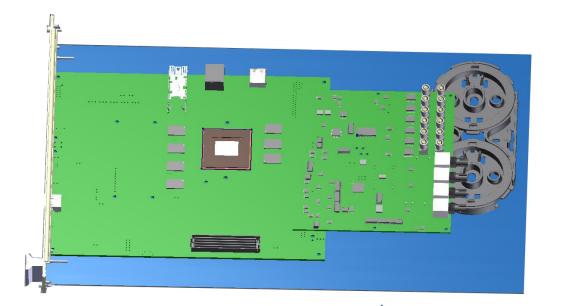

Boards size
 Powering requirements
 Cabling and EMI protection

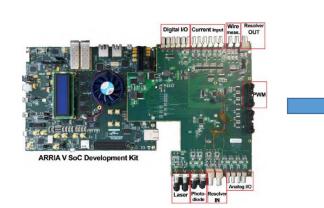
- 3. Customized VFC + maximized mezzanine
- Remove the lower SPF cages
- Check power supply VADJ
- VFC in standalone mode
- Stack-up of VMC and mezzanine
- Dedicated analogue/optical mezzanine
- None standard FMC mezzanine shape due to the numerous components
- VME connectors for powering the boards

Boards integration and design W. Vigano & P. Andersson

- Combination of the 2 boards we have today
- Use the FPGA reference design (Altera)

Board realisation 2) Powering requirements 3) Cabling and EMI protection


Boards combinations & integration: P. Andersson

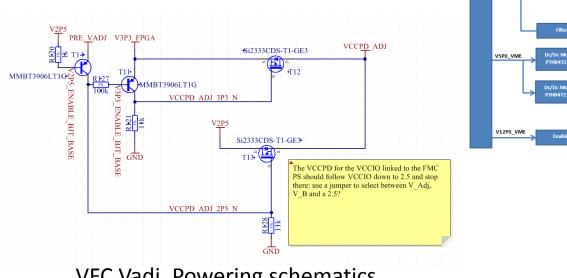


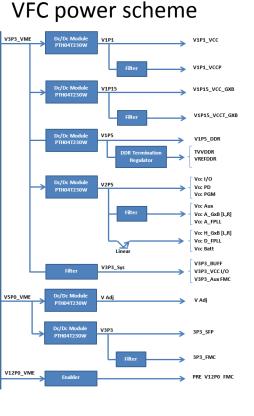
Option 3: Starter-kit + mezzanine

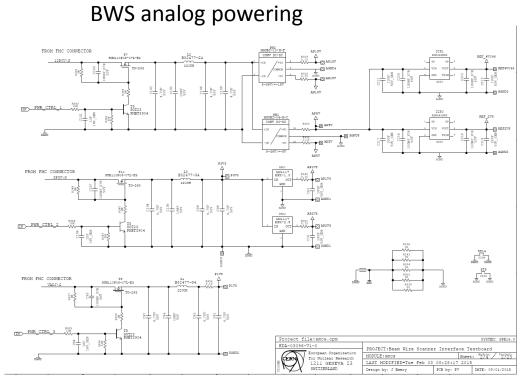
- Board realisation 1) Boards size
- Powering requirements
 Cabling and EMI protection

- Same configuration as today
- FPGA platform Arria V SoC Dev kit
- Modification of the wire-scanner mezzanine to fit the box

Boards combinations & integration: P. Andersson



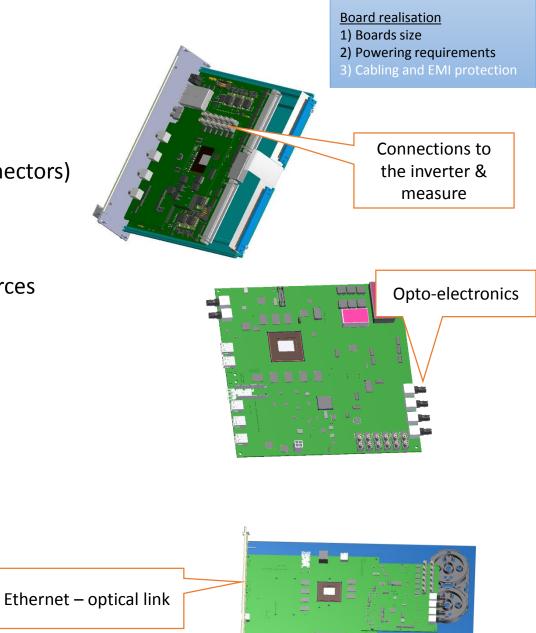



Powering requirements

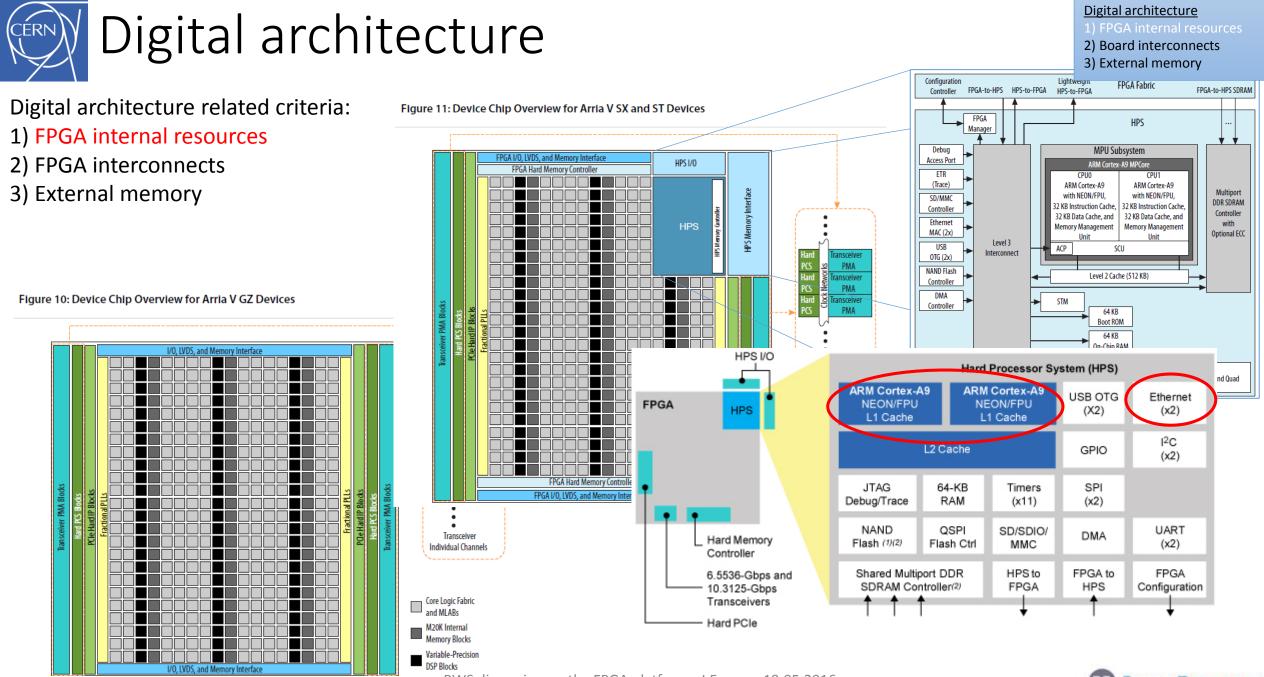
VFC powering the BWS analog board: 12 [V] -> OK 3.3 [V] -> OK 1.8 [V] -> potential problem, limited to 2.5V

1.8[V] is needed to operate the fast ADC, the whole board is using this voltage.

VFC Vadj. Powering schematics


Cablings:

- Similar philosophy of the cablings for all 3 solutions (use of top connectors)
- Other connections slightly worst on the DevKit since uses all sides


EMI interferences:

- All 3 options will use same box => same shielding from external sources
- Only remains perturbations between analog and digital part

Options	Electrical coupling
1. VFC	-
2. Custom	+
3. DevKit	-
- <u>(****</u>) er er	

Beams Department

BWS discussion on the FPGA platform - J.Emery - 19.05.2016

BE Beams Department

Digital architecture related criteria

Digital architecture 1) FPGA internal resources 2) Board interconnects 3) External memory

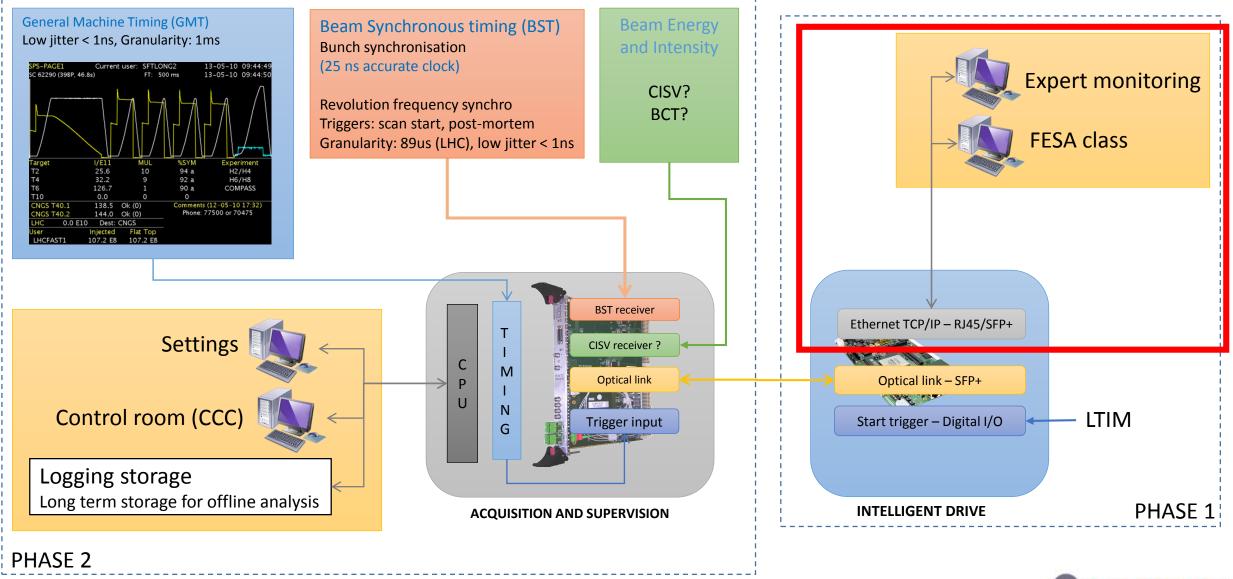
	Custom design Analog-Digital	VFC
Code status (for 2016)	95%	50% (6 months)
Evolutivity		Neutral
Use of IP developped for VFC	Same FPGA & transceiver	
FPGA use as today ALM [%]	14	21
Memory [%]	10	16
DSP Blocks [%]	13	16
FPGA type	ARRIA V - SOC	ARRIA V
Туре	5ASXFB3H4F40C5N*	5AGXMB1G4F40C4N
Nbr Gates	362K	300K
ALM (adaptive logic module)	136880	113208
Memory (M10k)	17,260	15100
DSP Blocks	1045	920
	2x ARM processor at 1GHz	Software NIOS II at 200 MHz**
Logic use for soft CPUs		4753
Transfert TCP/IP (as today)	>400 Mbits tested point-to-point	40 -100 Mbits max 🦳
memory controller	3 hard memory controllers	2 hard memory controllers
Processor side	2x 256 x 16bits + 1 x 256 x 16bits ECC	-
DDR3 SDRAM type	MT41K256M16HA-125:E	MT41K512M16HA-125:E
Organisation	256 M x 16	512 M x 16
FPGA side	4x 256M x 16bits	2x 512M x 16 bits
memory total in bytes	2048 Mbytes	2048 Mbytes
shared with program RAM	no	yes
Nbr of measurement saved (worst case SPS)	2048/336 = 6	2048/336= 6
Maximum theoritical transfert	4 x 1600 Mword = 12.8 Gbyte	2 x 1600 Mword = 6.4 Gbyte
Implemented interface tested	4 x 800 Mword = 6.4 Gbyte/s	Extrapolation: 2x800/4 = 0.8 Gbit/s
SPS: 336 Mbytes burst read time	0.0525	0.105
PSB: 190 Mbyte burst read time	0.0296875	0.059375

With NIOS Softcores

*As today on the started kit **Altera "Nios II Performance Benchmarks" 16.12.2015

slides

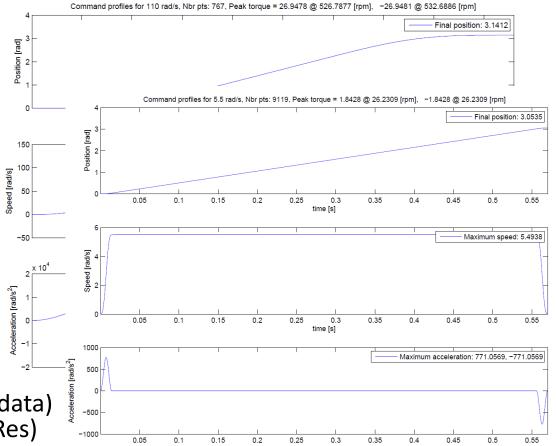
- FPGA logic elements:
 ok for today's implementation: with the 3 options
 - Future implementation:

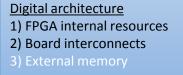

Depends on processing complexity

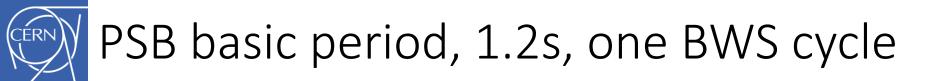
- More flexibility using ARM CPU
- External memory potential limitation
- VFC TCP/IP Data transfer will probably be 4 to 10x slower than today (400 Mbits, 100 to 40 Mbits)

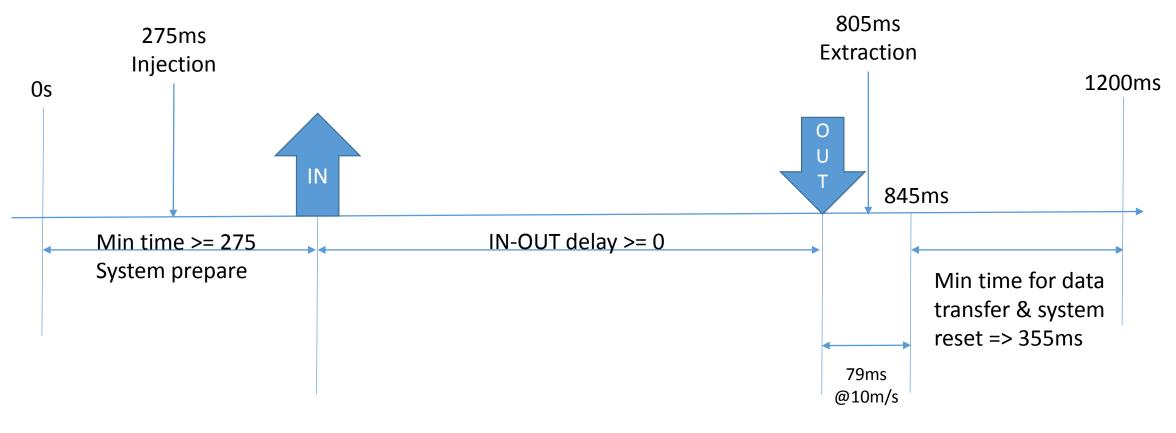
Overview: External systems connections

Digital architecture 1) FPGA internal resources 2) Board interconnects 3) External memory


External memory depth requirement


Depends on the use cases


- Scans duration change a lot with speeds 20 [m/s] -> 48 [ms] (767 pts) 1 [m/s] -> 570 [ms] (9119 pts)
- Time between IN and OUT (can we limit this time to 1s for exemple?)
- Number of scans per user: min. 2 if we limit INOUT time to get same functionality max. determined by memory depth, mode of operation (expert/op), required repetition rate (can we fix it?)
- For SPS:


With time between IN and OUT of 1s Worst Case: 2048/336 = 6 scans (full record OPS and resolver data) Best Case: 2048/ 5 = 409 scans (no offline processing of OPS/Res)

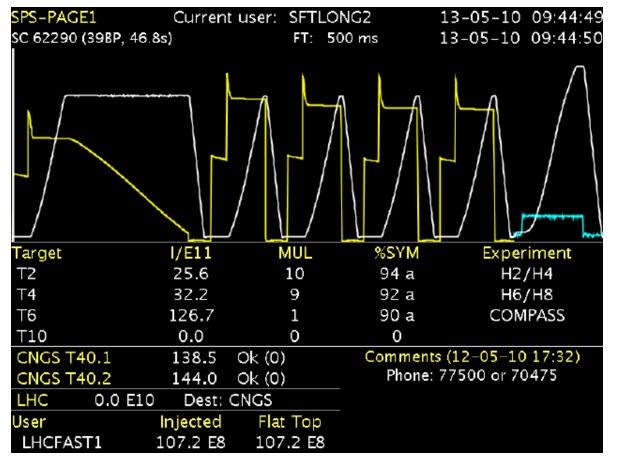
• VFC or for custom options have the same memory depth (2048 Mbytes)

355ms to transfer 101 Mbytes => 298 Mbit/s Not possible with TCP/IP and VFC Needs full implementation using VME (Phase 2)

Memory depth for the PSB

Expert mode (detailed data)

Tangential speed [m/s]Angular speed (PSB)movement duration [s]max. INOUtfeedback + wire data [Mbits]Optical encoder [Mbits]resolver raw [Mbits]201330.040.5120.33360.11360.11	total [Mbits] 740.54 765.65	92.57
	765.65	05 71
15 100 0.053 0.504 21.02 372.31 372.31		95.71
10 67 0.0785 0.491 22.33 395.51 395.51	813.34	101.67
1 6.7 0.485 0.245 41.86 741.58 741.58	1525.02	190.63
20 133 0.04 0.51 20.33 0.58 0.29	21.20	2.65
15 100 0.053 0.504 21.02 0.60 0.30	21.92	2.74
10 67 0.0785 0.491 22.33 0.64 0.32	23.28	2.91
1 6.7 0.485 0.245 41.86 1.20 0.60	43.66	5.46


- 1) One measurement cycle (one IN, one OUT)
- 2) Data recorded continuously between in and out movement
- 3) INOUT time calculated for IN=275ms, OUT=805ms
- 4) Expert mode => Motion data and raw encoders data storage Will be used until we have the optical position sensor digitalised in the VME
- 5) Op Mode => Motion data and processed encoders data storage

Operational mode (OPS & RESOLVER processed)

> IN-OUT delay used for the calculation: 20 m/s => 805-20-275=510ms 15m/s => 805-53/2-275=504ms 10m/s => 805-79/2-275=491ms 1m/s => 805-570/2-275=245ms

- Multiple users with different durations 1.2s to >20s
- Challenge arises when managing multiple scanning cycle per user
- <u>Clear use cases must be given by</u> <u>OP/ABP</u> to calculate the among of produced data and what data reduction we need to apply:
 - at the FPGA levels (ID and/or AS)
 - at the VME CPU levels

Memory depth for the SPS

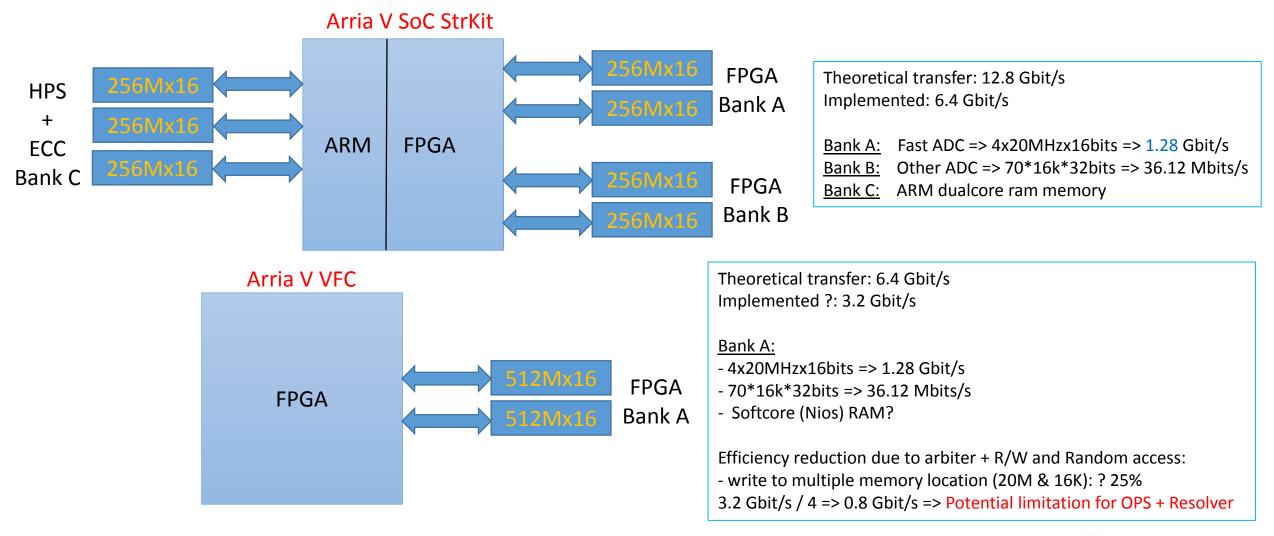
Digital architecture 1) FPGA internal resources 2) Board interconnects (detailed data)

Tangantial speed [m/s]	Angular spood (SDS)	movement duration [s]	INOUT	feedback + wire data [Mbits]	Optical encoder [Mbits]	resolver raw [Mbits]	total [Mbits]	[Mbyte]
Taligential speed [III/s]	Aliguiai speeu (SPS)	movement duration [s]	INCOT	reeuback + wire data [wbits]	Optical encoder [wibits]	Tesolvel Taw [IVIDITS]	total [wibits]	
20	110	0.048	1	37.76	668.95	668.95	1375.65	171.96
15	82	0.064	1	38.87	688.48	688.48	1415.82	176.98
10	55	0.0933	1	40.88	724.24	724.24	1489.37	186.17
1	5.5	0.57	1	73.73	1306.15	1306.15	2686.04	335.75
20	110	0.048	1	37.76	1.08	0.54	39.38	4.92
15	82	0.064	1	38.87	1.11	0.56	40.53	5.07
10	55	0.0933	1	40.88	1.17	0.58	42.64	5.33
1	5.5	0.57	1	73.73	2.11	1.05	76.89	9.61
								5 at 1 a
Tangential speed [m/s]	Angular speed (SPS)	movement duration [s]		feedback + wire data [Mbits]	Optical encoder [Mbits]	resolver raw [Mbits]	total [Mbits]	[Mbyte]
20	110	0.048	10	347.86	6162.11	6162.11	12672.08	1584.01
15	82	0.064	10	348.96	6181.64	6181.64	12712.24	1589.03
10	55	0.0933	10	350.98	6217.41	6217.41	12785.80	1598.22
1	5.5	0.57	10	383.83	6799.32	6799.32	13982.47	1747.81
20	110	0.048	10	347.86	9.94	4.97	362.77	45.35
15	82	0.064	10	348.96	9.97	4.99	363.92	45.49
10	55	0.0933	10	350.98	10.03	5.01	366.02	45.75
1	5.5	0.57	10	383.83	10.97	5.48	400.28	50.04

- Only one measurement cycle (one IN, one OUT) 1)
- Data recorded continuously between in and out movement 2)

Operational mode (OPS & RESOLVER processed)

Expert mode

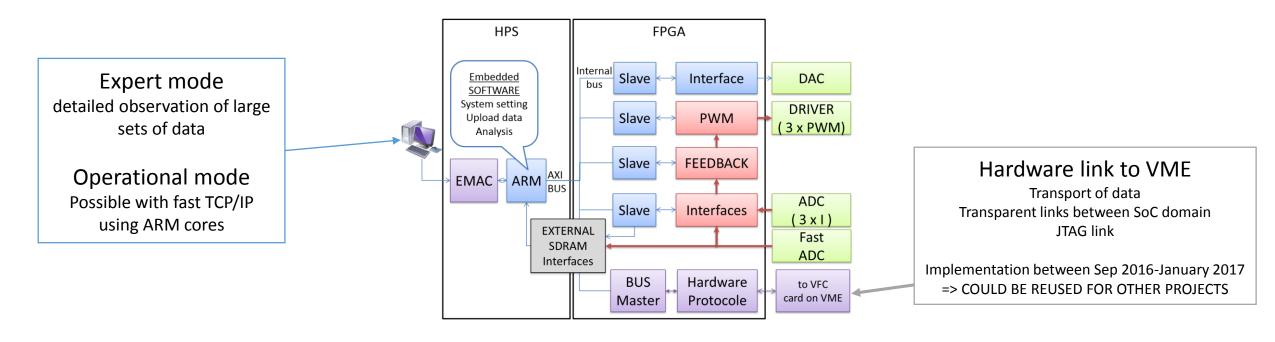

- Large data grow due to INOUT delay => Can we limit INOUT to a maximum of 1s and do multi-scans per cycle? 3)
- Expert mode => Motion data and raw encoders data storage 4) Will be used until we have the optical position sensor digitalised in the VME
- Op Mode => Motion data and processed encoders data storage or - J.Emery - 19.05.2016 5)

External memory access organisation

<u>Digital architecture</u>
1) FPGA internal resources
2) Board interconnects
3) External memory

Is the external memories connections could be a limitation?

Is the FPGA selection will determine the system and Firmware testability?

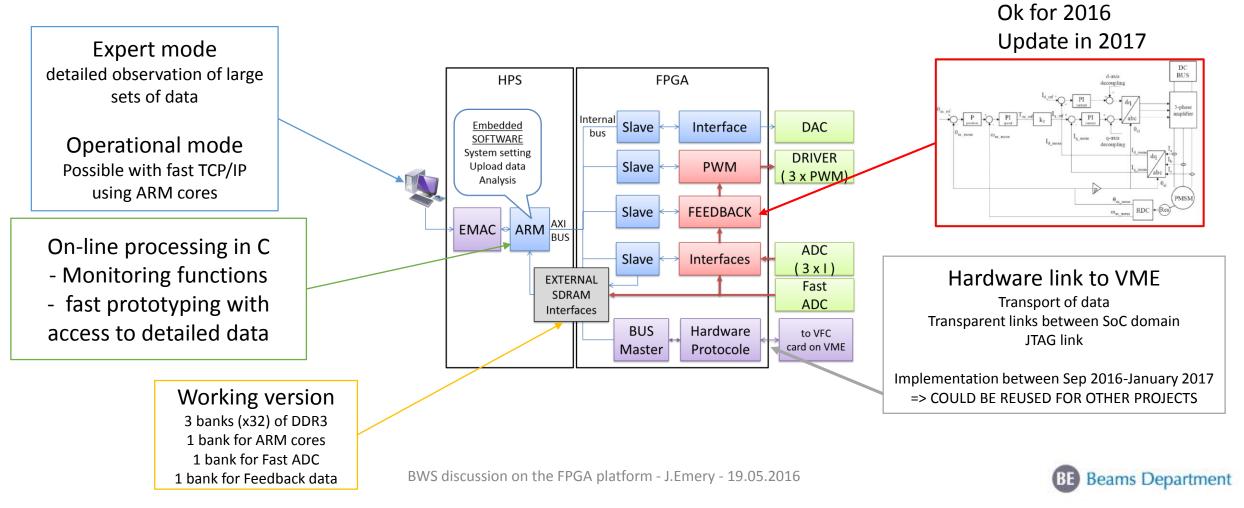

<u>Simulation level:</u>

Most of the final code written in VHDL => Verification (VHDL, SystemVerilog, Simulink) on simulator for all options.

<u>Component level:</u>

JTAG (and JTAG link) probing will be available on all options in the lab and on fields prototypes.

• <u>System level</u>: lab debugging and field validations: Same method could be used (TCP/IP access to large internal data with expert application), transfer rate will vary.



Code reuse between options?

Is the FPGA selection will determine code reusability?

- Yes partially, because we have already large working code (option 2 and 3)
- No, because all main functionalities will be in VHDL (reusable for all options)
- Not really, not much reuse of existing VFC code for all options (no need of VME, BST, etc ...)

Design process 1) Testability 2) Code reuse 2) Methodology

Design related criteria

Is the FPGA selection will drive design methodology?

- Yes, hardware processors can allow on-line prototype of processing to run in real time.

Methodology:

- Prototyping data processing in MatLab on existing raw data 1)
- 2) Simulink modelling of the algorithms and test on Dspace
- 3) Implementation in C => Fast to write in C and test on real system Needs fast processing units Needs memory access to data being recorded
- Final version must be in VHDL: 4)
 - Parallel processing independent to any OS or other running tasks
 Powerful verification in simulation

 - Powerful tools to do verification on the FPGA
 - But: Long development & verification time

Design process 1) Testability 2) Code reuse 2) Methodology

- Position, speed and torque precise controlling fully written in VHDL first version operational for 2016 Second version foreseen in 2017 (improve precision and flexibility)
- On-line data processing and fault detection
 Will be used for survey system conditions (mechanical, electrical, controls)
 Prototyping foreseen in Simulink/MatLab and C in the drive
 Implemented in VHDL for critical ones, leave
- Special functionalities

Processing/Area to foresee for future functionalities: Tails measurements procedure, <u>Delayed multi-scans (reconstruct small beams)</u>, vibrations on-line compensation.

- The 3 options where compared for their compatibility with existing hardware, firmware and future needs.
- The table next slide benchmark the 3 options between them.
- This doesn't mean we can't use one of the 3 to build the scanner.

We will adapt the hardware, firmware and specification based on the selected option by BI management.

Summary table

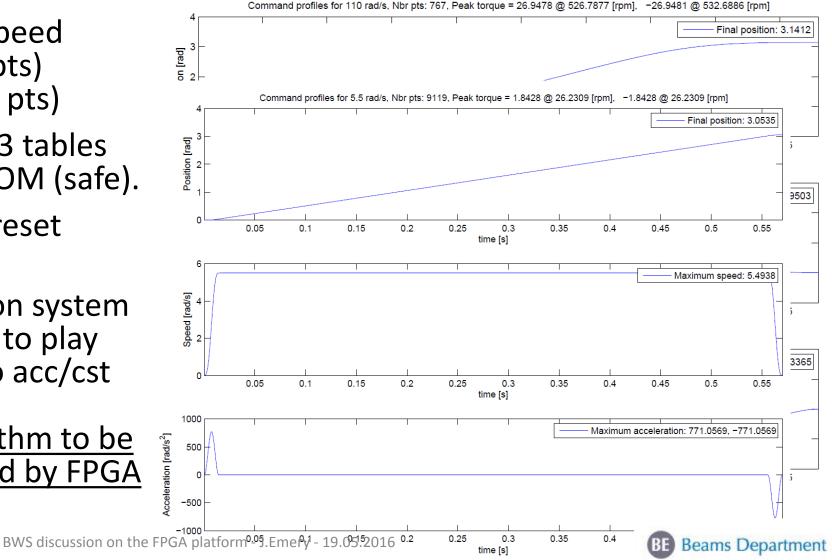
Criteria	Option 1:	Option 2:	Option 3:
	VFC modified	Custom	DevKit

- Possible to run in parallel with different options
- Evaluate VFC, then decide
- ?

Additional slides

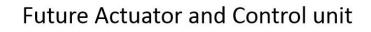
BWS discussion on the FPGA platform - J.Emery - 19.05.2016

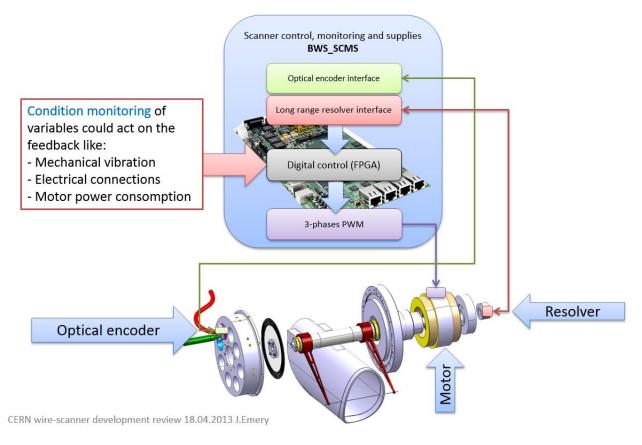
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-arria-v-soc.html



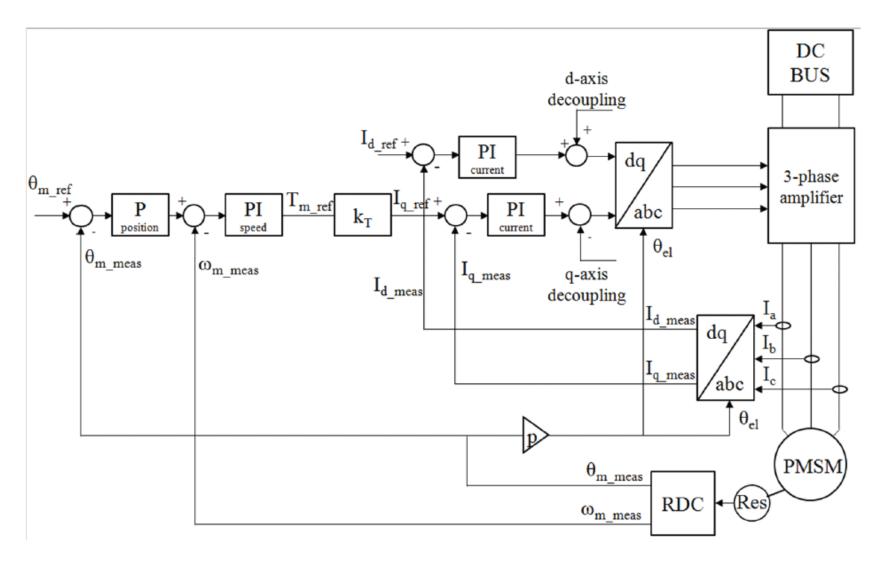
https://www.altera.com/products/boards and kits/dev-kits/altera/arria-10-soc-development-kit.html

Profiles: online calculation vs pre-calculated


- Operate at different top speed 20 [m/s] -> 48 [ms] (767 pts) 1 [m/s] -> 570 [ms] (9119 pts)
- Today pre-calculated into 3 tables included in the FPGA as ROM (safe).
- Needs 3 tables for each preset
- Alternative: Online calculation based on system properties. (3 parameters to play with: Jmax, duration, ratio acc/cst speed).


Optimised iterative Algorithm to be written in C and monitored by FPGA

Condition monitoring: Survey all system variables



- Condition monitoring and decision in real time.
- To react to unexpected even during a movement
- Large number of parameters to take into account
- Target reaction time within one feedback period 62.5us: 12k instructions Nios 62k instructions ARM

Feedback implementation in VHDL

CÉRN

Connection	ns Name	Description	Export	Clock	Base	End	IRQ	2
	■ hps_0	Arria V/Cyclone V Hard Processor Sy.						
Ŷ	-D- f2h_cold_reset_req	Reset Input	hps_0_f2h_cold_reset_req					
¢	-D- f2h_debug_reset_req	Reset Input	hps_0_f2h_debug_reset_req					
¢	−⊃− f2h_warm_reset_req	Reset Input	hps_0_f2h_warm_reset_req					
		Conduit	hps_0_f2h_stm_hw_events					
	memory	Conduit	memory					
0		Conduit	hps_io					
	h2f_reset	Reset Output	Double-click to export					
	h2f_axi_dock	Clock Input	Double-click to export	pll_50_outclk0				
	──── h2f_axi_master	AXI Master	Double-click to export	[h2f_axi_clock]				
	f2h_axi_dock	Clock Input	Double-click to export	pll_50_outclk0				
↓ \$-\$-	→ f2h_axi_slave	AXI Slave	Double-click to export	[f2h_axi_clock]	=			
	h2f_lw_axi_dock	Clock Input	Double-click to export	pll_50_outclk0				
	── h2f_lw_axi_master	AXI Master	Double-click to export	[h2f_lw_axi_dock]				
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	\rightarrow \blacksquare clk_100	Clock Source		exported				
	→ 🕀 pll_50	Altera PLL		clk_100				
↓ ↓ ↓	→ 	Clock Source		exported				
│ ◇ → ◆ ─	→ Motion_Controller_0	Motion Controller		pll_50_outclk0	multiple	multiple		
	DMA_DDR3_Motion_Controller	DMA_DDR3		pll_50_outclk0				
	→ 🕀 Info_0	Info		pll_50_outclk0				
	→	DDR3 SDRAM Controller with UniPHY		multiple	multiple	multiple		
	→	DDR3 SDRAM Controller with UniPHY		multiple	multiple	multiple		
	→ 	AD9257		pll_50_outclk0				
	→	DMA_DDR3_Fast_ADC		multiple		0x0000_01c3		
	→ DMA_DDR3_Fast_ADC_ch3	DMA_DDR3_Fast_ADC		multiple		0x0000_01c7		
	→ DMA_DDR3_Fast_ADC_ch4	DMA_DDR3_Fast_ADC		multiple		0x0000_01cb		
	Resolver_to_digital_converter	SPI_interface_AD2S1210		pll_50_outclk0				
• • • •	→ Current_acquisition	current_acquisition_top		pll_50_outclk0				
	→	ops_laser_mon_top		pll_50_outclk0				
	→	wire_meas_top		pll_50_outclk0				
│ │ � ─ � ─ ● ──	\rightarrow \blacksquare DMA_DDR3_ADC161_0	DMA_DDR3_ADC161		pll_50_outclk0		0x0000_01bf		
↓ ↓ ↓	→ DAC_resolver	Resolver_top		pll_50_outclk0				
∲∲	→ DAC_daisy_chain_0	DAC_daisy_chain		pll_50_outclk0	0x0000_01d0	0x0000_01df		
	→ Power_up_sequencer_0	Power_up_sequencer		pll_50_outclk0				
☆☆∳	→ 🕀 Token	slave_template		pll_50_outclk0	■ 0x0000_0200	0x0000_023f		
	DMA_ADC1615626	DMA_ADC		unconnected				
	onchip_memory_data_ADC1615626	On-Chip Memory (RAM or ROM)		unconnected	=			
	DMA_SPI_interface_AD2S1210	DMA_ADC		unconnected				
	onchip_memory_data_AD251210	On-Chip Memory (RAM or ROM)		unconnected	=P			
		DMA_PWM		unconnected				
	onchip_memory_data_PWM	On-Chip Memory (RAM or ROM)		unconnected	■			
	serial flash loader 0	Altera Serial Flash Loader						

hrd_5astfd5k3 > mem_if_ddr3_emif_1			ghr	d_5astfd5k3 > mem_if_ddr3_emif_1		ghrd_5astfd5k3 >	> mem_if_ddr3_em	nif_1	
DR3 SDRAM Controller with Un tera_mem_if_ddr3_emif	iPHY			DR3 SDRAM Controller Wi ra_mem_if_ddr3_emif	ith UniPHY	DDR3 SDR		ller with UniP	'HΥ
				Parameters					
					niPHY produces unencrypted PHY and Controller HDL,	Parameters			
r Parameters			co	onstraint scripts, an example design and	a testbench for simulation.			er with UniPHY produc	
Generation of the DDR3 Controller with UniPHY proc		PHY and Controller HDL,	-	Interface Type		constraint script	s, an example de	sign and a testbench	for simulat
constraint scripts, an example design and a testber	ch for simulation.		F	Enable Hard External Memory Interfa	ce	▼ Interface Ty	ne		
				PHY Settings Memory Parameters Me	mory Timing Board Settings Controller Settings Diagnostic		d External Memory	v Interface	
Interface Type				Apply memory parameters from the ma	anufacturer data sheet				
Enable Hard External Memory Interface				Apply device presets from the preset li		PHY Settings	Memory Paramet	ters Memory Timing	Board Se
PHY Settings Memory Parameters Memory Timi	Read Calling	Controller Cottings Discourse		Memory vendor:	Micron 👻	Apply timing	parameters from	the manufacturer da	ata sheet
Memory Parameters Memory Timi	ng Board Settings	Controller Settings Diagnostics		Memory format:	Discrete Device 👻			e preset list on the rig	
General Settings				Memory device speed grade:	800.0 V MHz	tIS (base):	170	ps	
Speed Grade:	3 👻			Total interface width:	32	tIH (base):	120	ps	
				DQ/DQS group size:	8 🗸	tDS (base):	10	DS	
Generate PHY only				Number of DQS groups: Number of chip selects:	4	tDH (base):		ps	
▼ Clocks				Number of clocks:	1 -	tDQSQ:	100].	
Memory clock frequency:				Row address width:	1 -	tQH:		ps	
	400.0	MHz		Column address width:	9		0.38	cycles	
Achieved memory clock frequency:	400.0	MHz		Bank-address width:	3	tDQSCK:	255	ps	
PLL reference clock frequency:	100.0	MHz		Enable DM pins		tDQSS:	0.27	cycles	
Rate on Avalon-MM interface:	Full 👻					tQSH:	0.4	cycles	
				Memory Initialization Options Mirror Addressing: 1 per chip select:		tDSH:	0.18	cycles	
Achieved local clock frequency:	400.0	MHz		Address and command parity	0	tDSS:	0.18	cycles	
Enable AFI half rate clock						tINIT:	500	us	
				Mode Register 0 Read Burst Type:	Securatial	tMRD:	4	cycles	
Advanced PHY Settings				DLL precharge power down:	Sequential DLL off	tRAS:	35.0	ns	
Advanced clock phase control				Memory CAS latency setting:	7 -	tRCD:	13.75	ns	
Additional address and command clock phase:	0.0	Degrees		Mode Register 1		tRP:	13.75	ns	
Supply Voltage:	1.5V DDR3 -	2-3,		Output drive strength setting:	RZQ/6 👻	tREFI:	7.8	us	
I/O standard:				Memory additive CAS latency setting		tRFC:	260.0	ns	
	SSTL-15 👻			ODT Rtt nominal value:	RZQ/4 ▼	tWR:	15.0	ns	
PLL sharing mode:	No sharing 👻			Mode Register 2 Auto selfrefresh method:		tWTR:	4	cycles	
DLL sharing mode:	No sharing 👻			Selfrefresh temperature:	Manual 👻	tFAW:	35.0	ns	
OCT sharing mode:	Slave 👻			Memory write CAS latency setting:		tRRD:	6.0	ns	
Reconfigurable PLL Location:	Top_Bottom 👻	BWS discussion on	the FP	GA platform - J.Emery		tRTP:	7.5	ns	
				1					

Q

ghrd_5astfd5k3 > mem_if_ddr3_emif_1

DDR3 SDRAM Controller with UniPHY

altera_mem_if_ddr3_emif

Parameters

Generation of the DDR3 Controller with UniPHY produces unencrypted PHY and Controller HDL, constraint scripts, an example design and a testbench for simulation.

Interface Type

Enable Hard External Memory Interface

PHY Settings Memory Parameters Memory Timing Board Settings Controller Settings Diagnostics

Use the Board Settings to model the board-level effects in the timing analysis.

The wizard supports single- and multi-rank configurations. Altera has determined the effects on the output signaling of these configurations and has stored the effects on the output slew rate and the channel uncertainty within the UniPHY MegaWizard.

These values are representative of specific Altera boards. You must change the values to account for the board level effects for your board. You can use HyperLynx or similar simulators to obtain values that are representative of your board.

Setup and Hold Derating

You can specify the slew rate of the output signals to refer to their effect on the setup and hold times of both the address and command signals and the DQ signals, or specify the setup and hold times directly.

Derating method:

Ose Altera's default settings

Specify slew rates to calculate setup and hold times

ťly

CK/CK# slew rate (Differential):	2.0	V/ns
Address and command slew rate:	1.0	V/ns
DQS/DQS# slew rate (Differential):	2.0	V/ns
DQ slew rate:	1.0	V/ns
tIS:	0.32	ns
tIH:	0.22	ns
tDS:	0.16	ns
tDH:	0.145	ns

Channel Signal Integrity

Channel Signal Integrity is a measure of the distortion of the eye due to intersymbol interference or crosstalk or other effects. Typically when going from a single-rank configuration to a multi-rank configuration there is an increase in the channel loss as there are multiple stubs causing reflections. Please perform your channel signal integrity simulations and enter the extra channel uncertainty as compared to Altera's reference eye diagram.

Dera	ting	Metho	od:
Dera	unq	PIEUK	Ju.

Use Altera's default settings

	Specify channel uncertainty value		
Address and command eye reduction (setup):	0.0	ns	
Address and command eye reduction (hold):	0.0	ns	
Write DQ eye reduction:	0.0	ns	
Write Delta DQS arrival time:	0.0	ns	
Read DQ eye reduction:	0.0	ns	
Read Delta DQS arrival time:	0.0	ns	

Board Skews

PCB traces can have skews between them that can cause timing margins to be reduced. Furthermore skews between different ranks can further reduce the timing margin in multi-rank topologies.

Restore default values		
Maximum CK delay to DIMM/device:	0.6	ns
Maximum DQS delay to DIMM/device:	0.6	ns
Minimum delay difference between CK and DQS:	-0.01	ns
Maximum delay difference between CK and DQS:	0.01	ns
Maximum skew within DQS group:	0.02	ns
Maximum skew between DQS groups:	0.02	ns
Average delay difference between DQ and DQS:	0.0	ns
Maximum skew within address and command bus:	0.02	ns
Average delay difference between address and command and CK:	0.0	ns

ghrd 5astfd5k3 > mem if ddr3 emif	emif 1	ddr3	if	> mem	5astfd5k3	ahrd
-----------------------------------	--------	------	----	-------	-----------	------

DDR3 SDRAM Controller with UniPHY

altera_mem_if_ddr3_emif

Parameters

Generation of the DDR3 Controller with UniPHY produces unencrypted PHY and Controller HDL, constraint scripts, an example design and a testbench for simulation.

Interface Type

Enable Hard External Memory Interface

PHY Settings Memory Parameters Memory Timing Board Settings Controller Settings Diagnostics

cycles

* Avalon Interface

Generate power-of-2 data bus widths for Qsys or SOPC Builder

Generate SOPC Builder compatible resets

Maximum Avalon-MM burst length: 4 🗸

Enable Avalon-MM byte-enable signal

* Low Power Mode

Enable Self-Refresh Controls

Enable Auto Power-Down

Auto Power-Down Cycles:

Efficiency

Enable User Auto-Refresh Controls

Command Queue Look-Ahead Depth: 4

Enable Auto-Precharge Control

Local-to-Memory Address Mapping: CHIP-ROW-BANK-COL 🗸

Enable Reordering

Starvation limit for each command: 10 commands

Internal (JTAG) 🚽

4 🗸

Configuration, Status and Error Handling

Enable Configuration and Status Register Interface

CSR port host interface:

Enable Error Detection and Correction Logic

Enable Auto Error Correction

Multiple Port Front End

Export bonding interface

Expand Avalon MM data for ECC

Number of ports:

ead-Data FIFO

ghrd_5astfd5k3 > mem_if_ddr3_emif_1

DDR3 SDRAM Controller with UniPHY altera_mem_if_ddr3_emif

Parameters

Generation of the DDR3 Controller with UniPHY produces unencrypted PHY and Controller HDL, constraint scripts, an example design and a testbench for simulation.

Interface Type

Enable Hard External Memory Interface

PHY Settings Memory Parameters Memory Timing Board Settings Controller Settings Diagnostics

Simulation Options

Auto-calibration mode:

Skip Memory Initialization Delays

Enable verbose memory model output

Enable support for Nios II ModelSim flow in Eclipse

Debugging Options

Debugging feature set:

Option 1 🚽

Full calibration 🚽

Feature Set	Included Debugging Features	Additional Utilization
No Debugging	None	None
Option 1	Connectivity to the EMIF toolkit allowing you to display information about your interface and generate reports.	+600 Registers +700 ALUTs +8 M9Ks

Enable EMIF On-Chip Debug Toolkit

EMIF On-Chip Debug Toolkit interface type: Avalon-MM Slave 👻

Efficiency Monitor and Protocol Checker Settings

The Efficiency Monitor and Protocol Checker is used to measure efficiency on the Avalon interface between the Traffic Generator and the Controller. It will also perform protocol checking on the bus.

Enable the Efficiency Monitor and Protocol Checker on the Controller Avalon Interface

BWS discussion on the FPGA platform - J.Emery - 19.05.2016