
C. Leggett 2016-05-19
1

Future Computing Challenges
for ATLAS

Charles Leggett

May 19 2016

Atlas Core Software Meeting / HPX

C. Leggett 2016-05-19
2

A Little History
• Athena: ATLAS event processing framework

► an extension of GAUDI, which is shared by several experiments

• Athena is ~15 years old
► serial processing design
► future computing needs were expected to be met by faster clock

rates
► relatively small memory footprint

• Since then, clock rates have stalled, CPU core counts have
exploded, memory prices have plateaued

► ratio of mem / core has not kept up with ATLAS computing needs
► memory usage for reconstruction have crept upwards to ~3GB

• Run 3 / High luminosity will likely dramatically increase this

C. Leggett 2016-05-19
3

AthenaMP : Multi-Process Concurrency
• ATLAS has been able to address the problem for now via

"trivial" event level parallelism
► after initialization, mother process forks children, each child

processes a separate event (serially)
► significant memory savings via linux COW

• large amounts of data are static after initialization, eg detector description,
and can be shared by all the child processes

• Virtually no modifications required to user level code base

• Ultimately, while this works on multi-core machines, it's not
good enough for many-core architectures.

► Knights Landing, ARM, Tesla K80, GPU, etc
► make use of large facilities such as Cori at LBL

C. Leggett 2016-05-19
4

Multi-Threaded Concurrency
• In light of future hardware trends, and expected event

processing requirements, decision was made to investigate a
multi-threaded approach

• Thread Safety:
► Athena was never designed to be thread safe
► Need to be backward compatible: can't start over from scratch

• don't have time/manpower to re-write millions of lines of legacy code
• will need to be able to analyze Run 1 and 2 data for a long time - overhead

and validation of 2 separate code bases impossible
► Need to address as many thread safety issues at the framework

level as possible, to shield end users from threading concepts

► Thread safe programming is HARD. Can't expect the average
physicist to be able to do it correctly.

• but have to be flexible enough to enable thread access for those who
understand the risks and need the benefits

• Leverage existing work on Gaudi Hive

C. Leggett 2016-05-19
5

AthenaMT / Gaudi Hive
• Gaudi Hive: multi-threaded, concurrent extension to Gaudi

► backward compatible, uses Intel tbb for thread management

• Data Flow driven
► Algorithms declare their data dependencies

• build a directed acyclic graph - can be used for optimal scheduling
► Scheduler automatically executes Algorithms as data becomes available.

• Multi-threaded
► Algorithms process events in their own thread,

from a shared Thread Pool.

• Pipelining: multiple algorithms and
events can be executed simultaneously

► some Algorithms are long, and produce data that
many others need (eg track fitting). instead of
waiting for it to finish, and idling processor, start
a new event.

• Algorithm Cloning
► multiple instances of the same Algorithm can

exist, and be executed concurrently, each with
different Event Context.

► cloning is not obligatory, balancing memory
usage with concurrency.

► support for re-entrant Algorithms
time

C. Leggett 2016-05-19
6

AthenaMT / Gaudi Hive Operation
• Configuration, Initialization,

Finalization are performed serially in
"master" thread

► only Algorithm::execute is concurrent

• Algorithms are scheduled when data
becomes available

► Algorithms must declare their inputs
at initialization or dynamically with
DataHandles

► data only exchanged via whiteboard
► tbb::task wraps the pair

(Algorithm*, EventContext)

• Algorithms can be non-cloneable
(singleton), cloneable, or re-entrant

► more clones = more memory, but
greater opportunity for concurrency

• cardinality is tunable at runtime
► re-entrant is best, but hardest to

code

• tbb layer is normally hidden from
users, but Algorithms can
explicitly use tbb constructs
(parallel_for, concurrent_queue,
etc) for finer grained parallelism

► plays well with the Scheduler

• Component model allows Scheduler
to be replaced as needed

C. Leggett 2016-05-19
7

Current AthenaMT Status
• Several sub-detector testbeds have been implemented, and

show very promising performance/memory saving results

• Integrated into our regular code base
► separate AthenaMT nightly build to enable certain features

• Some user level code changes will still have to be made
► data dependency declaration through use of Data Handles
► all shared components (Services) must be thread safe

• will generally be done by "experts" and not "regular" users
► some modifications to access patterns of data in the Event Store
► user education required to avoid and remove "thread hostile" code

• many dangerous patterns can be caught early via static analyzers and gcc
compiler plugins

