Future Computing Challenges
for ATLAS

Charles Leggett
May 19 2016

Atlas Core Software Meeting / HPX




| A Little Histo

- Athena: ATLAS event processing framework
» an extension of GAUDI, which is shared by several experiments

* Athenais ~15 years old
> serial processing design

» future computing needs were expected to be met by faster clock
rates

> relatively small memory footprint

* Since then, clock rates have stalled, CPU core counts have
exploded, memory prices have plateaued

> ratio of mem / core has not kept up with ATLAS computing needs

> memory usage for reconstruction have crept upwards to ~3GB
* Run 3/ High luminosity will likely dramatically increase this




1 AthenaMP : Multi-Process Concurrenc

* ATLAS has been able to address the problem for now via
"trivial" event level parallelism

> after initialization, mother process forks children, each child
processes a separate event (serially)

> significant memory savings via linux COW

 large amounts of data are static after initialization, eg detector description,
and can be shared by all the child processes

 Virtually no modifications required to user level code base

 Ultimately, while this works on multi-core machines, it's not
good enough for many-core architectures.

> Knights Landing, ARM, Tesla K80, GPU, etc
> make use of large facilities such as Cori at LBL




2l Multi-Threaded Concurrenc

BERKELEY LAB

* In light of future hardware trends, and expected event
processing requirements, decision was made to investigate a

multi-threaded approach

* Thread Safety:
» Athena was never designed to be thread safe
> Need to be backward compatible: can't start over from scratch

« don't have time/manpower to re-write millions of lines of legacy code

 will need to be able to analyze Run 1 and 2 data for a long time - overhead
and validation of 2 separate code bases impossible

> Need to address as many thread safety issues at the framework
level as possible, to shield end users from threading concepts

> Thread safe programming is HARD. Can't expect the average

physicist to be able to do it correctly.
* but have to be flexible enough to enable thread access for those who
understand the risks and need the benefits

.- Leverage existing work on Gaudi Hive



BERKELEY LAB

AthenaMT / Gaudi Hive

Gaudi Hive: multi-threaded, concurrent extension to Gaudi
» backward compatible, uses Intel tbb for thread management

Data Flow driven
» Algorithms declare their data dependencies

* build a directed acyclic graph - can be used for optimal scheduling
» Scheduler automatically executes Algorithms as data becomes available.

Multi-threaded

» Algorithms process events in their own thread,
from a shared Thread Pool.

Pipelining: multiple algorithms and

events can be executed simultaneously
» some Algorithms are long, and produce data that
many others need (eg track fitting). instead of
waiting for it to finish, and idling processor, start
a new event.

Algorlthm Cloning
» multiple instances of the same Algorithm can
exist, and be executed concurrently, each with
different Event Context.
» cloning is not obligatory, balancing memory
usage with concurrency.
» support for re-entrant Algorithms

time — »

C.

Leggett

2016-05-19



-1 AthenaMT / Gaudi Hive Operation

- Configuration, Initialization,
Finalization are performed serially in
"master" thread

> only Algorithm: :execute iS concurrent
» Algorithms are scheduled when data
becomes available

> Algorithms must declare their inputs
at initialization or dynamically with
DataHandles

» data only exchanged via whiteboard
» tbb::task wraps the pair

(Algorithm™*, EventContext) .

* Algorithms can be non-cloneable
(singleton), cloneable, or re-entrant

> more clones = more memory, but
greater opportunity for concurrency

 cardinality is tunable at runtime

» re-entrant is best, but hardest to
0 code

|
‘ EventLoopMgr
i Scheduler
]
!
1
1
h 4 -
. Algorithmm
Whiteboard
pu—
[erxecuhun 1 EventIN
o Context _ \|\ I—h-—l I_IJ

tbb layer is normally hidden from
users, but Algorithms can
explicitly use tbb constructs
(parallel_for, concurrent _queue,
etc) for finer grained parallelism

» plays well with the Scheduler

Component model allows Scheduler
to be replaced as needed

C. Leggett 2016-05-19



| Current AthenaMT Status

« Several sub-detector testbeds have been implemented, and
show very promising performance/memory saving results

* Integrated into our regular code base
» separate AthenaMT nightly build to enable certain features

« Some user level code changes will still have to be made
» data dependency declaration through use of Data Handles

» all shared components (Services) must be thread safe
 will generally be done by "experts" and not "regular" users
» some modifications to access patterns of data in the Event Store

» user education required to avoid and remove "thread hostile" code

* many dangerous patterns can be caught early via static analyzers and gcc
compiler plugins




