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Where are we now?
• So far, you should already have learned about: 

• The basic types of accelerators 
• Some useful hints at types of magnets and basic beam 

parameters 
• Electromagnetic fields 
• Maxwell’s equations 
• The Lorentz force 

• We are getting a general idea that particles are bent and focused 
by magnets. Now we will explore the fundamental physics of how 
particles behave when they experience electromagnetic fields.
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Aims for this lecture

From the CAS Syllabus: 

1. Arrive at a general description of particle motion in 
EM fields 

2. Understand what “maps” are, and how they relate to 
particle motion and simulation 

3. Derive some basic maps from the equations of motion 
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Particle in an EM field
How can we describe the motion?
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B E ?
BEARTH

B B

How can we describe the motion?
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Motion of Charged Particles
• Let’s start by looking at the motion of single particles. 

• “…in principle, there are only two steps in the 
analysis of any dynamical system. The first step is to 
write down the equations of motion; and the second 
step is to solve them” [A. Wolski, pp. 59 ]
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• In an accelerator, magnets and rf cavities are generally defined 
along a trajectory (i.e. we know where they are in distance, not 
time). The Hamiltonian approach is lets us use this fact.   

• The motion of particles in electromagnetic fields is conservative, 
and similar to a harmonic oscillator with perturbations. We have lots 
of mathematical tools to treat this in the Hamiltonian formalism.  

• Ultimately, it makes our lives easier.

If we know the Hamiltonian and 
Hamilton’s equations, we can find the 
equations of motion for a dynamical 

system.  

Our first goal: find out the Hamiltonian!

dp
dt

= F F = q(E+ v ×B) (1.2)(1.1)
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• Why not just use Newton’s laws & Lorentz force?

Hamiltonian (straight beam line)
• The Hamiltonian represents the total energy of the particle

dxi
dt

= δH
δ pi

dpi
dt

= −δH
δ xi

Hamilton’s equations

H = H (xi , pi;t)

• We need a Hamiltonian that gives (1.1) and (1.2) when substituted 
into (1.3) and (1.4)

(1.3)

(1.4)

H = c (p − qA)2 +m2c2 + qφ

We propose the following Hamiltonian 
for a relativistic charged particle 
moving in an electromagnetic field:

(1.5)

But this is still defined in terms of 
time… so we want to change it.
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Hamiltonian (straight beam line)
H = c (p − qA)2 +m2c2 + qφ

We don’t need to go through every step here, but here’s what we do.  

STEP 1: We take (1.5) and change the independent variable to z, 
the distance along the beam line

(1.5)

We get (try this at home…), use H= total energy E

Hnew = − pz = − (E − qφ)2

c2
− (px − qAx )

2 − (py − qAy )
2 −m2c2 − qAz (1.6)
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(x, px ) (y, py ) (t,−E)

Note that if the E and B fields are static, the Hamiltonian is independent of 
time and the total energy of the particle is constant. Happy days.

Straight Beamline Hamiltonian
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STEP 2: We choose new (canonical) variables for the 
position & momentum that stay small as the particle 
moves along the beam line and scale by reference 
momentum P0  (subscript ‘0’ denotes reference) 

STEP 3: We define new (canonical) longitudinal variables. 

B E ?
BEARTH

B B

Blue: “reference” trajectory
Red: actual particle trajectory

We’re not going to go through all the steps…



Variables for Beam Dynamics

• Using the Hamiltonian, we can get the equations of 
motion for a particle in a (straight) beam line.  

• Usually these equations are too complex to solve 
exactly, so we have to make some approximations.
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H = δ
β0

− δ + 1
β0

− qφ
cP0

⎛
⎝⎜

⎞
⎠⎟

2

− (px − ax )
2 − (py − ay )

2 − 1
β0
2γ 0

2 − az
(1.7)

Eventually, our Hamiltonian with independent 
variable ’s’ along the beamline, becomes:

a = q
P0
A

Scaled vector potential

δ = E
cP0

− 1
β0

Energy deviation

(x, px , y, py , z,δ )
Co-ordinates & momenta

Hamiltonian (curved beam line)

• Now we complicate things slightly with curved reference frame 

• We want to measure s along a path which curves with the 
trajectory of a particle on a curved orbit, which we call the 
reference trajectory 

• Spoiler alert: simply turns out as a factor in front of the straight 
line Hamiltonian
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Particle motion is described with respect to a reference orbit in the non-
inertial frame (x, y, s). This co-ordinate system is known as Frenet-Serret

First, we convert to a non-inertial reference frame. 
We use the ’Frenet-Serret’ co-ordinate system

In accelerator physics we ask: “What are the particles’ generalized 
coordinates when they reach a certain point in space?”
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• First, we convert to ‘Frenet-Serret’ co-ordinate system

Tangent unit vector to closed orbitŝ(s) = dr
!
0 (s)
ds

x̂(s) = −ρ(s) dŝ(s)
ds

Unit vector perpendicular to tangent vector

ŷ(s) = x̂(s)× ŷ(s) Third unit vector…

Particle trajectory: r
!
(s) = r

!
0 (s)+ xx̂(s)+ yŷ(s)

H = eφ + c m2c2 + (ps − eAs )
2

(1+ x / ρ)2
+ (px − eAx )

2 + (py − eAy )
2

nb. the reference frame moves WITH the particle
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• As before, we change the independent variable from t to s

(x, px , y, py ,t,−H )The new conjugate phase space variables are

And the new Hamiltonian (s-dependent) is 

Which is time-independent (if also           are time-independent) φ,A

!H = − ps

!H = −(1+ x / ρ) (H − eφ)2

c2
−m2c2 − (px − eAx )

2 − (py − eAy )
2⎡

⎣
⎢

⎤

⎦
⎥

1/2

− eAs

Expanding the Hamiltonian to second order in px, py

!H ≈ − p(1+ x / ρ)+ 1+ x / ρ
2p

(px − eAx )
2 + (py − eAy )

2⎡⎣ ⎤⎦
1/2
− eAs

H − eφ = E

p = E2 / c2 −m2c2
is the total particle energy

is the total particle momentum

15

So far, we have been looking in general for any 
Vector potential 
Scalar potential φ

A

But in reality, we (usually) use electric fields to 
accelerate particles and magnetic fields to 

bend, focus and manipulate the beams. 

So we need to know  
“which magnetic fields can we really create?”

(We’ll come back to the Hamiltonian later…)
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Where are we now?



Magnetic Fields
• Maxwell’s equations, time independent, no sources, so:

∇× B
!"
= 0

∇⋅B
!"
= 0

J
!"
= 0

B
!"
= µ0H
!"!

• We’ll “guess” that the following obeys these equations:  

• A constant vertical field Bz, and

By + iBx = Cn (x + iy)
n−1

• n is an integer > 0, C is a complex number 

• (real part understood)
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By + iBx = Cn (x + iy)
n−1∂

∂x
+ i ∂

∂yNow apply to each side of 

LHS: =
∂By

∂x
− ∂Bx

∂y
+ i ∂Bx

∂x
+
∂By

∂y
⎛
⎝⎜

⎞
⎠⎟

= ∇× B
!"

⎡⎣ ⎤⎦z + i∇⋅B
!"

Where we know Bz is constant.

RHS: = (n −1)(x + iy)n−2 + i2 (n −1)(x + iy)n−2 = 0

So we find that as expected, the field 
satisfies Maxwell’s equations in free space 

By + iBx = Cn (x + iy)
n−1

∇× B
!"
= 0 ∇⋅B

!"
= 0∴ and

Does this obey Maxwell in free space?
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Multipole fields

By + iBx = Bref (bn + ian )
x + iy
Rref

⎛

⎝⎜
⎞

⎠⎟n=1

∞

∑
n−1

In the usual notation:

bn are “normal multipole coefficients” (LEFT) 
and an are “skew multipole coefficients” (RIGHT) 
‘ref’ means some reference value

n=1, dipole field 
n=2, quadrupole field 
n=3, sextupole field

Images: A. Wolski, https://cds.cern.ch/record/1333874 

anbn
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Multipole Magnets
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Images: Ted Wilson, JAI Course 2012 Image: Danfysik

Image: STFC

Image: Wikimedia commons
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So we now have:  

An idea of how to get the Hamiltonian 

and 

An idea of which types of magnetic 
fields we might encounter
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Lecture 2
FYI… in the next lecture we will: 

4. Understand the approach to compute linear and 
non-linear maps 

5. Derive and look at transfer matrices for main types 
of magnets used in accelerators 

5. Get a glimpse (only) of non-linear dynamics 
(covered further later & at the Advanced CAS school)
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B E ?
BEARTH

B B

From Lecture 1: 
How can we describe the motion?
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What are maps?
• Maps are the basic mathematical instruments to transport particles 

through (arbitrary) EM fields.  

• They require some input and give an output. 

• A transfer map is a statement of how dynamical variables change at 
different points. They are abstract objects, and can be matrices, Taylor 
series, Lie Transforms or other objects. 

• In this case we talk about particle co-ordinates but we could propagate 
any mathematical object (beam sizes, spin, etc…) in similar way 

x
!
(s1) = M

" !"
(x
!
(s 0 ))

In the Introductory school, we will focus on matrices (1st order maps), but you should 
be aware that the concept is more general. Maps can be based on symplectic 

integrators (usually done in modern tracking programs), and other objects.

x
!
= (x, px , y, py , z,δ )
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Each of these ‘elements’ (and drifts) can 
be thought of as transforming the particle 
co-ordinates 

Mathematically, they are ‘maps’

x
!
= (x, px , y, py , z,δ )

x
!
(s1) = M

" !"
(x
!
(s 0 ))
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Maps for Circular Machines
Accelerators are made up of beamline elements, each with their own 
linear and nonlinear fields, they might be mis-alignmed, mis-powered 
etc… 

If one tried to write down the entire Hamiltonian for that system, it would 
be pretty darn complicated!  

So instead, we take a piecewise approach:  

1. First compute the maps for individual beamline elements using a 
local coordinate system that is appropriate to the element.  

2. Then the maps are combined to produce a one-turn map, and then 
we can do our analysis on that map.  

28



Map Definition and Conventions

• If the equations of motion are linear, we can write the map as a matrix. 

• We can understand many off the effects of dynamics of particles by 
using linear equations. 

• (Even though, in fact, the equations of motion are non-linear in reality, 
even in a drift space!)
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Transfer matrices
x
!
(s) =

x(s)
px (s)

⎛

⎝
⎜

⎞

⎠
⎟x

!
(s) = M (s | s0 )x

!
(s0 )

Where M is the ‘transfer matrix’.

The effect of a succession of drifts & lenses can 
be found by multiplying their transfer matrices… 

x
!
(sn ) = Mn (sn | sn−1)…M 3(s3 | s2 )M 2 (s2 | s1)M1(s1 | s0 )x

!
(s0 )

We could do this for a whole ring, but usually can 
exploit some symmetry (superperiod or cell)

30



Drift space
• Let’s consider the simplest case, a drift. There are no 

electric or magnetic fields and we can set potentials to 
zero. φ = 0,A = 0

• The Hamiltonian is then: H = px
2

2
+
py
2

2
+ δ 2

2β0
2γ 0

2

• Where we’ve expanded to second order, and dropped terms of 
3rd and higher order.  

• WHY? Because we want to construct LINEAR maps.  

• It is also possible to have NON-LINEAR maps (see later) 

Wait, let’s go back a step…
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H = δ
β0

− δ + 1
β0

⎛
⎝⎜

⎞
⎠⎟

2

− px
2 − py

2 − 1
β0
2γ 0

2

The actual Hamiltonian in a drift (no potentials) is:

• And we can drop the 3rd and higher order terms (and zeroth order as this doesn’t 
contribute to the dynamics) 

• This is called the paraxial approximation and you will hear people talking about it. It’s 
worth knowing that we do this, and (for instance) whether the simulation code you 
use takes this approximation or not. 

• We COULD solve the equations of motion and then approximate, but it is useful to 
start with a hamiltonian (even an approximate one) as it has conserved quantities 

Expanding to second order gives:

H = −1+ px
2

2
+
py
2

2
+ δ 2

2β0
2γ 0

2 +O(3)
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Back to our drift space…
H = px

2

2
+
py
2

2
+ δ 2

2β0
2γ 0

2

• Using Hamilton’s equations  (1.3) and (1.4) to find equations of motion:

x1 = x0 + Lpx0
px1 = px0
y1 = y0 + Lpy0
py1 = py0

z1 = z0 +
L

β0
2γ 0

2 δ 0

δ1 = δ 0

dx
ds

= δH
δ px

= px

dpx
ds

= −δH
δ x

= 0

dδ
ds

= −δH
δ z

= 0

dz
ds

= ∂H
∂δ

= δ
β0
2γ 0

2

(for y are the same format…)

Solve exactly to get
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In matrix form
• We can express this linear map as a matrix

x
!
1 = Rdrift x

!
0

x
!
=

x
px
y
py
z
δ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Rdrift =

1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0

0 0 0 0 1 L
β0
2γ 0

2

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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Quadrupole magnet

• Let’s try a non-trivial example, and one that is 
commonly used in accelerators: the quadrupole 

• Quadrupoles provide transverse focusing

Image: STFC
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Quadrupole magnet
• Remember our equation for magnetic multipoles?

By + iBx = Bref (bn + ian )
x + iy
Rref

⎛

⎝⎜
⎞

⎠⎟n=1

∞

∑
n−1

NB. When working with the Hamiltonian, we need 
the vector potential, which can be written:

A = (0,0,Az ) Az = −Bref Re (bn + ian )
(x + iy)n

nR ref
n−1

n=1

∞

∑
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NB. For a pure multipole field, we normally use the 
multipole fields normalised by 

So, we can define the normalised multipole strength, k: 

q / P0

kn−1 =
q
P0

∂n−1By

∂xn−1
= (n −1)!

Bref
Rref
n bn

So for our quadrupole, n=2, we have: k1 =
q
P0

∂By

∂x
=
Bref
Rref

b2

Az = −
Bref b2
2Rref

(x2 − y2 )

This becomes… for n=2 (quadrupole): 

b = (k1y,k1x,0)

And we get the magnetic field and vector potentials:

a = (0,0,− k1
2
(x2 − y2 ))

this is the bit we need next…37

• Now we go back down the Hamiltonian rabbit hole…

a = (0,0,− k1
2
(x2 − y2 ))

Hquad =
px
2

2
+
py
2

2
+ δ 2

2β0
2γ 0

2 +
k1
2
(x2 − y2 )

Oh wait, it’s not so bad… it’s just like the 
drift, but with the new potential!

nb. we’ve made the paraxial approximation again
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• Now we can solve the equations of motion again…

dx
ds

= δH
δ px

= px

dpx
ds

= −δH
δ x

= k1x

Hquad =
px
2

2
+
py
2

2
+ δ 2

2β0
2γ 0

2 +
k1
2
(x2 − y2 )

dy
ds

= δH
δ py

= py

dpy
ds

= −δH
δ y

= −k1y

etc…

dδ
ds

= −δH
δ z

= 0

dz
ds

= ∂H
∂δ

= δ
β0
2γ 0

2
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Quadrupole transfer matrix

x
!
1 = Rquad x

!
0

x
!
=

x
px
y
py
z
δ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Rquad =

cos(ωL) sin(ωL)
ω

0 0 0 0

−ω sin(ωL) cos(ωL) 0 0 0 0

0 0 cosh(ωL) sinh(ωL)
ω

0 0

0 0 ω sinh(ωL) cosh(ωL) 0 0

0 0 0 0 1 L
β0
2γ 0

2

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

ω = k1

Through a quad of length L, strength k1
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Let’s look at the x, px part

Rquad =
cos(ωL) sinωL

ω
−ω sin(ωL) cos(ωL)

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

If               is real so k1>0, the motion is a harmonic oscillator 

(but in accelerators, the particle won’t undergo a whole oscillation 
just in a single quadrupole) 

But note that when k1<0 the motion is defocusing 
(while in the vertical it becomes focusing) 

ω = k1

i.e. we can’t focus in x and y at the 
same time with a single quadrupole, 
the other plane is always defocusing.

But we can get around that (later)…
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Thin lens approximation
• If we view a quadrupole as having length 
• f is a constant.
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Lq → 0
k1Lq →1/ f k1 =

q
P0

∂By

∂x

RF
x = 1 0

−1/ f 1
⎛

⎝⎜
⎞

⎠⎟
RF
y = 1 0

1/ f 1
⎛

⎝⎜
⎞

⎠⎟

f

x0

x

z

x0 / f

thin lens focusing “F” quadrupole

reversed (defocusing) in y-planefocusing in x-plane



Sneak peak: AG focusing - thin lens

M = 1 d
0 1

⎛
⎝⎜

⎞
⎠⎟

1 0
1/ f 1

⎛

⎝⎜
⎞

⎠⎟
1 d
0 1

⎛
⎝⎜

⎞
⎠⎟

1 0
−1/ f 1

⎛

⎝⎜
⎞

⎠⎟

In the ‘thin lens’ approximation:

=
1− d

f
− d

2

f 2
2d + d

2

f

− d
f 2

1+ d / f

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Focusing & defocusing with a drift between doesn’t cancel out. 
This is what gives us ‘alternating gradient’ focusing

For infinitesimally short lenses, we can recover most of the physics
K(s) = ±δ (s) / f where f is the focal length.

Particle in AG focusing
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Dipole magnet
• In a dipole magnet, the field is (ideally) uniform 

• But it’s not so simple as the reference trajectory is 
curved - so that the dynamical variables stay small

The vector potential in curvilinear co-ordinates is

As = −B0 x − x2

(x + ρ)
⎛
⎝⎜

⎞
⎠⎟

Ax = 0 Ay = 0

let’s look at the resulting linear transfer matrix 
(after using the 2nd order Hamiltonian as usual)
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Transfer Matrix for a Dipole

Rdipole =
cosθ ρ sinθ

−(1 / ρ)sinθ cosθ

⎛

⎝
⎜

⎞

⎠
⎟

A few things to note: 
Because of curvilinear co-ordinate system it should look like a 
drift… but it looks like there is focusing (weak focusing)
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in the deflecting plane…

θ ρ

θ = L / ρ

L = arclength

kx = 1/ ρ
2

Pure sector dipole



Solenoid

• Produces a uniform field parallel to beam direction 
• Can provide transverse focusing, particle capture etc and  
• Also used in detectors for PP experiments

47

B = (0,0,B0 )

A = (−B0y
2
, B0x
2
,0)

Transfer Matrix for a Solenoid
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Rsol =

cos2(ωL) 1
2ω
sin(2ωL) 1

2
sin(2ωL) 1

ω 2 sin(2ωL) 0 0

−ω
2
sin(2ωL) cos2(ωL) −ω sin2(ωL) 1

2
sin(2ωL) 0 0

− 1
2
sin(2ωL) − 1

ω
sin2(2ωL) cos2(ωL) 1

2ω
sin(2ωL) 0 0

ω sin2(ωL) − 1
2
sin(2ωL) −ω

2
sin(2ωL) cos2(ωL) 0 0

0 0 0 0 1 L
β0
2γ 0

2

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

ω s = ks =
q
P0
B0
2

There is coupling between horizontal & vertical motion 

(And we have lost some higher order effects (chromaticity)  
by using 2nd order Hamiltonian) 



Hamilton’s equations of motion* are:

*neglecting synchrotron motion

dx
ds

= ∂H
∂px

, dpx
ds

= − ∂H
∂x

With transverse magnetic fields we can show (scaled & in (x,s,y)) :

Betatron equations of motion become: (neglect higher order terms)

B
!"
= Bx (x, y)x̂ + By(x, y)ŷ

Bx = − 1
(1+ x / ρ)

∂As
∂y

By = − 1
(1+ x / ρ)

∂As
∂x

′′x − ρ + x
ρ 2 =

By

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

′′y = − Bx

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

dy
ds

= ∂H
∂py

,
dpy
ds

= − ∂H
∂y
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Now let’s look at the equation of motion
• In a circular accelerator… with linear magnetic field components.

Getting to Hill’s equation (2)

′′x − ρ + x
ρ 2 =

By

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

′′y = − Bx

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

So we have these equations:

Expand the B field to first order in x,y:

By = −B0 +
∂By

∂x
x Bx =

∂By

∂x
y

B0
Bρ

= 1
ρ ie. dipole field defines the closed orbit

′′x + Kx (s)x = 0

′′y + Ky(s)y = 0

Kx = 1/ ρ
2 − K1(s)

Ky = K1(s) K1(s) =
1
Bρ

∂B1
∂x

nb. in a quadrupole Kx = -Ky
50



Hill’s Equation

d 2x
ds2

+ kx (s)x = 0

kx (s) =
1
ρ 2 −

B1(s)
Bρ

Where k changes along the path, and

 . E. D. Courant and H. S. Snyder, “Theory of the alternating-gradient synchrotron,” Annals of Physics, vol. 3, no. 1, pp. 1–48, 1958.  

nb. In a quadrupole:

ky(s) =
B1(s)
Bρ

B1(s) = ∂By / ∂x

evaluated at the closed orbit

d 2y
ds2

+ ky(s)y = 0

Following similar notation to S. Y. Lee, Accelerator Physics, pp.41

kx (s) = − B1(s)
Bρ

Kx,y(s + L) = Kx,y(s)Focusing functions are periodic over length L , ie. 

Hill’s equation is a linearised equation of motion describing particle oscillations:
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Non-Linear Maps

• We will talk about this qualitatively only…
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Particle Motion in EM Fields
Hopefully, we have done the following: 

1. Arrived at a general description of particle motion in EM fields 

2. Understood what “maps” are, and how they relate to particle motion 
and simulation 

3. Derived some basic maps from the equations of motion 

4. Understood the approach to compute linear and non-linear maps 

5. Derived and looked at transfer matrices for main types of magnets used in 
accelerators 

5. Got a glimpse of non-linear dynamics
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Additional Material
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Let’s check if the following solves Hill’s equation…

x = β(s)ε cos(φ(s)+φ0 )

w = β φ = φ(s)+φ0Substitute

& differentiate…

′x = ε ′w (s)cosφ − dφ
ds
w(s)sinφ⎧

⎨
⎩

⎫
⎬
⎭

nb. we need:
dφ
ds

= 1
β(s)

= 1
w2 (s)

Differentiate again…

′′x = ε ′′w (s)cosφ− ′w (s)
w2 (s)

sinφ + ′w (s)
w2 (s)

sinφ

=0
! "#### $####

− 1
w3 cosφ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

′′x + kx = 0

Sub into Hill’s…

ε ′′w (s)cosφ − 1
w3 cosφ

⎧
⎨
⎩

⎫
⎬
⎭
+ kw ε cosφ = 0 gives… ′′w (s)− 1

w3 + kw = 0

1
2
β ′′β − 1

4
′β 2 + kβ 2 = 1‘envelope equation’
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The usual approach - transfer matrices

x
!
(s) =

x(s)
′x (s)

⎛

⎝
⎜

⎞

⎠
⎟

Express solution in matrix form…

x
!
(s) = M (s | s0 )x

!
(s0 )

Where M is the ‘transfer matrix’.

We already know (because we showed)

x = w ε cos(φ(s)+φ0 )

Take derivative for x’…

x ' = w ' ε cos(φ(s)+φ0 )−
ε
w
sin(φ(s)+φ0 )

dφ(s)
ds

= 1
w2

d(cos( f (x))
dx

= −sin( f (x)) df (x)
dx

reminder…
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φ = 0‘cosine like’

x(s2 )
′x (s2 )

⎛

⎝
⎜

⎞

⎠
⎟ =

a b
c d

⎛
⎝⎜

⎞
⎠⎟

x(s1)
′x (s1)

⎛

⎝
⎜

⎞

⎠
⎟

‘sine like’

x = w ε cos(φ(s)+φ0 )

x ' = w ' ε cos(φ(s)+φ0 )−
ε
w
sin(φ(s)+φ0 )

φ = π / 2
Trace two rays…

Yields 4 simultaneous equations so we can solve for a,b,c,d…
µ = φ2 −φ1

M12 =

w2
w1
cosµ −w2w1′ sinµ w1w2 sinµ

−1+w1w1
′w2w2′

w1w2
sinµ − w1′

w2
− w2

′
w1

⎛

⎝
⎜

⎞

⎠
⎟ cosµ

w1
w2
cosµ +w1w2′ sinµ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Mperiod =
cosµ −ww′ sinµ w2 sinµ

−1+w
2w′2

w2 sinµ cosµ +ww′ sinµ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Simplify by considering a period or ‘turn’, and w’s are equal.

β = w2 α = − 1
2

′β γ = 1+α
β

Mperiod =
cosµ +α sinµ β sinµ

−γ sinµ cosµ −α sinµ

⎛

⎝
⎜

⎞

⎠
⎟

If we define the so-called ‘Twiss’ or ‘Courant-Snyder’ parameters:

(sorry that we are reusing symbols again… these are NOT 
the relativistic parameters)

You will see this later…
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