LONGITUDINAL beam DYNAMICS in circular accelerators

Frank Tecker CERN, BE-OP

Introduction to Accelerator Physics
Budapest, 2-14/10/2016

Summary of the 2 lectures:

- Introduction
- Circular accelerators: Cyclotron / Synchrotron
- Dispersion Effects in Synchrotron
- Stability and Longitudinal Phase Space Motion
- Stationary Bucket
- Injection Matching
- RF manipulations in the PS

More related lectures:

- Linacs
- David Alesini
- Cyclotrons
- RF Systems
- Mike Seidel
- Electron Beam Dynamics
- myself
- Lenny Rivkin

The CERN Accelerator Complex

Introductory CAS, Budapest, October 2016

Particle types and acceleration

The accelerating system will depend upon the evolution of the particle velocity along the system

- electrons reach a constant velocity at relatively low energy
- heavy particles reach a constant velocity only at very high energy
-> we need different types of resonators, optimized for different velocities
\rightarrow the revolution frequency will vary, so the RF frequency will be changing

Particle rest mass:

Relativistic gamma factor:

$$
=\frac{E}{E_{0}}=\frac{m}{m_{0}}
$$

Velocity, Energy and Momentum

normalized velocity $\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}}$
=> electrons almost reach the speed of light very quickly (few MeV range)
total energy

$$
E=m_{0} c^{2}
$$

rest energy

$$
\gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Momentum $\quad p=m v=\frac{E}{c^{2}} \quad c=\frac{E}{c}=\quad m_{0} c$
=> Magnetic field needs to follow the momentum increase

Acceleration: May the force be with you

To accelerate, we need a force in the direction of motion!

Hence, it is necessary to have an electric field E (preferably) along the direction of the initial momentum (z), which changes the momentum of the particle.

$$
\frac{d p}{d t}=e E_{z}
$$

The $2^{\text {nd }}$ term - larger at high velocities - is used for:

- BENDING: generated by a magnetic field perpendicular to the plane of the particle trajectory. The bending radius ρ obeys to the relation:

$$
\frac{p}{e}=B \rho \quad \text { in practical units: } \quad B \quad[\mathrm{Tm}] \quad \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3}
$$

- FOCUSING: the bending effect is used to bring the particles trajectory closer to the axis, hence to increase the beam density.

Energy Gain

The acceleration increases the momentum, providing kinetic energy to the charged particles.

In relativistic dynamics, total energy E and momentum p are linked by

$$
E^{2}=E_{0}^{2}+p^{2} c^{2} \quad\left(E=E_{0}+W\right) \quad W \text { kinetic energy }
$$

Hence: $\quad d E=v d p$
$\left(2 E d E=2 c^{2} p d p \Leftrightarrow d E=c^{2} m v / E d p=v d p\right)$
The rate of energy gain per unit length of acceleration (along z) is then:

$$
\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}
$$

and the kinetic energy gained from the field along the z path is:

$$
d W=d E=e E_{z} d z \quad \rightarrow \quad W=e \quad E_{z} d z=e V
$$

where V is just a potential.

Unit of Energy

Today's accelerators and future projects work/aim at the TeV energy range.
LHC: $7 \mathrm{TeV} \rightarrow 14 \mathrm{TeV}$
CLIC: $380 \mathrm{GeV} \rightarrow 3 \mathrm{TeV}$ HE-LHC/FCC: 33/100 TeV

In fact, this energy unit comes from acceleration:
1 eV (electron Volt) is the energy that 1 elementary charge e (like one electron or proton) gains when it is accelerated in a potential (voltage) difference of 1 Volt.

Basic Unit: eV (electron Volt)

$$
\begin{aligned}
& \mathrm{keV}=1000 \mathrm{eV}=10^{3} \mathrm{eV} \\
& \mathrm{MeV}=10^{6} \mathrm{eV} \\
& \mathrm{GeV}=10^{9} \mathrm{eV} \\
& \mathrm{TeV}=10^{12} \mathrm{eV}
\end{aligned}
$$

LHC $=\sim 450$ Million km of batteries!!! $3 x$ distance Earth-Sun

Methods of Acceleration: Time varying fields

Electrostatic field is limited by insulation problems, the magnetic field does not accelerate at all.
Circular machine: DC acceleration impossible since $\oint \vec{E} \cdot \mathrm{~d} \vec{s}=0$

The electric field is derived from a scalar potential φ and a vector potential A The time variation of the magnetic field H generates an electric field E

The solution: => time varying electric fields

- Induction
- RF frequency fields

$$
\oint \vec{E} \cdot \mathrm{~d} \vec{s}=-\iint \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{A}
$$

Acceleration by Induction: The Betatron

It is based on the principle of a transformer:

- primary side: large electromagnet - secondary side: electron beam.

The ramping magnetic field is used to guide particles on a circular trajectory as well as for acceleration.

Limited by saturation in iron ($\sim 300 \mathrm{MeV}$ e-)
Used in industry and medicine, as they are compact accelerators for electrons

side view

Donald Kerst with the first betatron, invented at the University of Illinois in 1940 Introductory CAS, Budapest, October 2016

Summary: Relativity + Energy Gain

Newton-Lorentz Force $\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e\left(\begin{array}{ll}\vec{E}+\vec{v} & \vec{B}\end{array}\right)$
$2^{\text {nd }}$ term always perpendicular to motion $=>$ no acceleration

Relativistics Dynamics

$\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}} \quad=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{12^{2}}}$
$p=m v=\frac{E}{c^{2}} \quad c=\frac{E}{c}=\quad m_{0} c$
$E^{2}=E_{0}^{2}+p^{2} c^{2} \longrightarrow d E=v d p$
$\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}$
$d E=d W=e E_{z} d z \quad \rightarrow W=e \quad E_{z} d z$

RF Acceleration

$$
E_{z}=\hat{E}_{z} \sin { }_{R F} t=\hat{E}_{z} \sin (t)
$$

$$
\hat{E}_{z} d z=\hat{V}
$$

$$
W=e \hat{V} \sin \phi
$$

(neglecting transit time factor)
The field will change during the passage of the particle through the cavity
=> effective energy gain is lower

Common Phase Conventions

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

$$
E_{1}(t)=E_{0} \sin \left({ }_{R F} t\right)
$$

$E_{2}(t)=E_{0} \cos \left({ }_{R F} t\right)$
3.

I will stick to convention 1 in the following to avoid confusion

Longitudinal phase space

The energy - phase oscillations can be drawn in phase space:

The particle trajectory in the phase space ($\Delta p / p, \phi$) describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does no \dagger change with time (matched beam)

Circular accelerators

Cyclotron

Synchrotron

Circular accelerators: Cyclotron

Courtesy: EdukiteLearning, https://youtu.be/cNnNM2ZqIsc

Circular accelerators: Cyclotron

Used for protons, ions

$$
\begin{aligned}
& \mathrm{B}=\text { constant } \\
& \omega_{\mathrm{RF}}=\text { constant }
\end{aligned}
$$

Synchronism condition

$$
\Rightarrow \quad \begin{gathered}
\omega_{s}=\omega_{R F} \\
2 \pi \rho=v_{s} T_{R F}
\end{gathered}
$$

Ions trajectory

Cyclotron frequency $\quad \omega=\frac{q B}{m_{0} \gamma}$

1. $\quad \gamma$ increases with the energy \Rightarrow no exact synchronism
2. if $v \ll c \Rightarrow \gamma \cong 1$

Circular accelerators: Cyclotron

Courtesy Berkeley Lab, https://www.youtube.com/watch?v=cutKuFxeXmQ

Cyclotron / Synchrocyclotron

Synchrocyclotron: Same as cyclotron, except a modulation of ω_{RF}

$$
\text { B } \quad=\text { constant }
$$

$$
\gamma \omega_{\mathrm{RF}} \quad=\text { constant } \quad \omega_{\mathrm{RF}} \text { decreases with time }
$$

The condition:

$$
\omega_{s}(t)=\omega_{R F}(t)=\frac{q B}{m_{0} \gamma(t)}
$$

Allows to go beyond the non-relativistic energies

Circular accelerators: The Synchrotron

Synchronism condition

1. Constant orbit during acceleration
2. To keep particles on the closed orbit, B should increase with time
3. ω and $\omega_{R F}$ increase with energy

RF frequency can be multiple of revolution frequency

$$
\omega_{R F}=h \omega
$$

h integer, harmonic number: number of RF cycles per revolution

Circular accelerators: The Synchrotron

EPA (CERN)
Electron Positron Accumulator

Examples of different proton and electron synchrotrons at CERN

+ LHC (of course!)

The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

If $v \approx c, \omega$ hence $\omega_{\text {RF }}$ remain constant (ultra-relativistic e^{-})

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - Energy ramping

Energy ramping by increasing the B field (frequency has to follow v):

$$
p=e B \Rightarrow \frac{d p}{d t}=e \quad \dot{B} \Rightarrow(p)_{t u r n}=e \quad \dot{B} T_{r}=\frac{2 \quad R \dot{B}}{v}
$$

Since:

$$
\begin{aligned}
& E^{2}=E_{0}^{2}+p^{2} c^{2} \Rightarrow E=v p \\
& (E)_{\text {turn }}=(W)_{s}=2 \text { e } R \dot{B}=e \hat{V} \sin
\end{aligned}
$$

Stable phase φ_{s} changes during energy ramping

$$
\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \quad \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)
$$

- The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- Each synchronous particle satisfies the relation $p=e B \rho$. They have the nominal energy and follow the nominal trajectory.

The Synchrotron - Frequency change

During the energy ramping, the RF frequency increases to follow the increase of the revolution frequency:

$$
\omega=\frac{\omega_{R F}}{h}=\omega\left(B, R_{s}\right)
$$

Hence: $\frac{f_{R F}(t)}{h}=\frac{v(t)}{2 R_{s}}=\frac{1}{2} \frac{e c^{2}}{E_{s}(t)} \frac{-}{R_{s}} B(t) \quad$ (using $p(t)=e B(t), \quad E=m c^{2}$)
Since $E^{2}=\left(m_{0} c^{2}\right)^{2}+p^{2} c^{2}$ the RF frequency must follow the variation of the B field with the law

$$
\frac{f_{R F}(t)}{h}=\frac{c}{2 R_{s}} \frac{B(t)^{2}}{\left(m_{0} c^{2} / e c\right)^{2}+B(t)^{2}}{ }^{1 / 2}
$$

This asymptotically tends towards $\quad f_{r} \rightarrow \frac{c}{2 R_{s}}$
compared to $m_{0} c^{2} /(e c)$ when B becomes large which corresponds to $v \rightarrow c$

Dispersion Effects in a Synchrotron

If a particle is slightly shifted in momentum it will have a different orbit and the orbit length is different.

The "momentum compaction factor" is defined as:

$$
\alpha_{c}=\frac{d L / L}{d p / p} \quad \alpha_{c}=\frac{p}{L} \frac{d L}{d p}
$$

If the particle is shifted in momentum it will have also a different velocity.
As a result of both effects the revolution frequency changes with a "slip factor":

$$
=\frac{\mathrm{d} f_{r} / f_{r}}{\mathrm{~d} p / p} \quad \eta=\frac{p}{f_{r}} \frac{d f_{r}}{d p}
$$

$\mathrm{p}=$ particle momentum

$\mathrm{R}=$ synchrotron physical radius
$f_{r}=$ revolution frequency

Momentum Compaction Factor

$$
\begin{array}{ll}
\alpha_{c}=\frac{p}{L} \frac{d L}{d p} & d s_{0}=d \\
d s=(+x) d
\end{array}
$$

The elementary path difference from the two orbits is: definition of dispersion D_{x}

$$
\frac{d l}{d s_{0}}=\frac{d s \quad d s_{0}}{d s_{0}}=\frac{x}{=} \frac{D_{x}}{p} \frac{d p}{p}
$$

leading to the total change in the circumference:

$$
\begin{aligned}
& d L=d l=\frac{x}{C} d s_{0}=\frac{D_{x}}{} \frac{d p}{p} d s_{0} \\
& \alpha_{c}=\frac{1}{L} \int_{C} \frac{D_{x}(s)}{\rho(s)} d s_{0} \begin{array}{l}
\text { With } \rho=\infty \text { in } \\
\text { straight sections } \\
\text { we get: }
\end{array} \alpha_{c}=\frac{\left\langle D_{x}\right\rangle_{m}}{R}
\end{aligned}
$$

$\left\langle>_{m}\right.$ means that the average is considered over the bending magnet only

Dispersion Effects - Revolution Frequency

There are two effects changing the revolution frequency: the orbit length and the velocity of the particle

$$
\begin{aligned}
& f_{r}=\frac{c}{2 R} \\
& \frac{d f_{r}}{f_{r}}=\frac{d}{R} \frac{d R}{\uparrow}=\frac{d}{c} \frac{d p}{p} \\
& \text { definition of momentum } \\
& \text { compaction factor }
\end{aligned}
$$

$$
\begin{aligned}
p=m v= & \left.\frac{E_{0}}{c} \quad \frac{d p}{p}=\frac{d}{c}+\frac{\left.d(1)^{2}\right)^{1 / 2}}{(1)^{2}}\right)^{1 / 2}
\end{aligned} \underbrace{\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{1}}_{2} \frac{d}{}, ~ \eta=\frac{1}{\gamma^{2}}-\alpha_{c} .
$$

RECAP: Principle of Phase Stability (Linac)

Let's consider a succession of accelerating gaps, operating in the 2π mode, for which the synchronism condition is fulfilled for a phase Φ_{s}.
is the energy gain in one gap for the particle to reach the next gap with the same RF phase: P_{1}, P_{2}, \qquad are fixed points.

If an energy increase is transferred into a velocity increase =>

$$
\begin{array}{ll}
M_{1} \& N_{1} \text { will move towards } P_{1} & \Rightarrow \text { stable } \\
M_{2} \& N_{2} \text { will go away from } P_{2} & \Rightarrow \text { unstable }
\end{array}
$$

(Highly relativistic particles have no significant velocity change)

Phase Stability in a Synchrotron

From the definition of η it is clear that an increase in momentum gives

- below transition ($\eta>0$) a higher revolution frequency (increase in velocity dominates) while
- above transition ($\eta<0$) a lower revolution frequency ($v \approx c$ and longer path) where the momentum compaction (generally >0) dominates.

Introductory CAS, Budapest, October 2016

Crossing Transition

At transition, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.
Crossing transition during acceleration makes the previous stable synchronous phase unstable. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

In the PS: γ_{+}is at $\sim 6 \mathrm{GeV}$
In the SPS: $\gamma_{\mathrm{t}}=22.8$, injection at $\mathrm{\gamma}=27.7$
=> no transition crossing!
In the $\mathrm{LHC} \gamma_{+}$is at $\sim 55 \mathrm{GeV}$, also far below injection energy
Transition crossing not needed in leptons machines, why?

Dynamics: Synchrotron oscillations

Simple case (no accel.): $B=$ const., below transition $\quad \gamma<\gamma_{t}$
The phase of the synchronous particle must therefore be $\phi_{0}=0$.
$\Phi_{1} \quad$ - The particle B is accelerated

- Below transition, an energy increase means an increase in revolution frequency
- The particle arrives earlier - tends toward ϕ_{0}

- The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_{0}

Synchrotron oscillations

$800^{\text {th }}$ revolution period

Synchrotron oscillations

Particle B has made one full oscillation around particle A.
The amplitude depends on the initial phase and energy.
Exactly like the pendulum

This oscillation is called:

> Synchrotron Oscillation

The Potential Well

Cavity voltage

Potential well

Longitudinal Phase Space Motion

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Synchrotron oscillations - No acceleration

Phase space picture

Synchrotron oscillations (with acceleration)

Case with acceleration B increasing

$$
\gamma<\gamma_{t}
$$

Phase space picture

$$
\phi_{s}<\phi<\pi-\phi_{s}
$$

Synchrotron motion in phase space

$\Delta \mathbf{E}-\phi$ phase space of a stationary bucke \dagger (when there is no acceleration)

Dynamics of a particle
Non-linear, conservative oscillator \rightarrow e.g. pendulum

Particle at the
unstable fix-point
Particle at the
unstable fix-point
Bucket area: area enclosed by the separatrix The area covered by particles is the longitudinal emittance

Particle outside the separatrix:
Particle inside the separatrix:

(Stationary) Bunch \& Bucket

The bunches of the beam fill usually a part of the bucket area.

Bucket area = longitudinal Acceptance [eVs]
Bunch area $=$ longitudinal beam emittance $=4 \pi \sigma_{E} \sigma_{\dagger}[\mathrm{eVs}]$
Attention: Different definitions are used!
Introductory CAS, Budapest, October 2016

Synchrotron motion in phase space

The restoring force is non-linear.
\Rightarrow speed of motion depends on position in phase-space
(here shown for a stationary bucket)

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET".

As the synchronous phase gets closer to 90° the buckets gets smaller.

The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for ϕ_{s} $=180^{\circ}$ (or 0°) which correspond to no acceleration. The RF acceptance increases with the RF voltage.

Longitudinal Dynamics in Synchrotrons

It is also often called "synchrotron motion".

The RF acceleration process clearly emphasizes two coupled variables, the energy gained by the particle and the RF phase experienced by the same particle. Since there is a well defined synchronous particle which has always the same phase ϕ_{s}, and the nominal energy E_{s}, it is sufficient to follow other particles with respect to that particle.
So let's introduce the following reduced variables:

revolution frequency :	$\Delta f_{r}=f_{r}-f_{r s}$
particle RF phase :	$\Delta \phi=\phi-\phi_{s}$
particle momentum :	$\Delta p=p-p_{s}$
particle energy	$\Delta E=E-E_{s}$
azimuth angle	$\Delta \theta=\theta-\theta_{s}$

First Energy-Phase Equation

$$
f_{R F}=h f_{r} \Rightarrow h \quad \text { with }=\int \begin{gathered}
\substack{\text { particle ahead arrives earlier } \\
\text { => smaller RF phase }}
\end{gathered}
$$

For a given particle with respect to the reference one:

$$
\Delta \omega=\frac{d}{d t}(\Delta \theta)=-\frac{1}{h} \frac{d}{d t}(\Delta \phi)=-\frac{1}{h} \frac{d \phi}{d t}
$$

Since: $\eta=\frac{p_{s}}{\omega_{r s}}\left(\frac{d \omega}{d p}\right)_{s} \quad$ and $\quad \begin{aligned} & \\ & E=v_{0}^{2}+p^{2} c^{2} \\ & \\ & E={ }_{r s} R_{s} p\end{aligned}$
one gets:

Second Energy-Phase Equation

The rate of energy gained by a particle is: $\quad \frac{d E}{d t}=e \hat{V} \sin \phi \frac{\omega_{r}}{2 \pi}$
The rate of relative energy gain with respect to the reference particle is then:

$$
2 \quad\left(\frac{\dot{E}}{r}\right)=e \hat{V}\left(\sin \quad \sin { }_{s}\right)
$$

Expanding the left-hand side to first order:

$$
\left(\dot{E} T_{r}\right) \quad \dot{E} \quad T_{r}+T_{r s} \quad \dot{E}=E \dot{T}_{r}+T_{r s} \quad \dot{E}=\frac{d}{d t}\left(T_{r s} \quad E\right)
$$

leads to the second energy-phase equation:

$$
2 \frac{d}{d t}\left(\frac{E}{r s}\right)=e \hat{V}\left(\sin _{r s} \sin { }_{s}\right)
$$

Equations of Longitudinal Motion

$$
\begin{gathered}
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi} \quad 2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right) \\
\text { deriving and combining } \\
\downarrow \\
\frac{d}{d t}\left[\frac{R_{s} p_{s}}{h \eta \omega_{r s}} \frac{d \phi}{d t}\right]+\frac{e \hat{V}}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)=0
\end{gathered}
$$

This second order equation is non linear. Moreover the parameters within the bracket are in general slowly varying with time.
We will study some cases in the following...

Small Amplitude Oscillations

Let's assume constant parameters R_{s}, p_{s}, ω_{s} and η :

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad \text { with }
$$

$$
\Omega_{s}^{2}=\frac{h \eta \omega_{r s} e \hat{V} \cos \phi_{s}}{2 \pi R_{s} p_{s}}
$$

Consider now small phase deviations from the reference particle:

$$
\sin \phi-\sin \phi_{s}=\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \cong \cos \phi_{s} \Delta \phi
$$

and the corresponding linearized motion reduces to a harmonic oscillation:

$$
\because+\begin{aligned}
& 2 \\
& s
\end{aligned}=0
$$

where Ω_{s} is the synchrotron angular frequency

Stability condition for ϕ_{s}

Stability is obtained when Ω_{s} is real and so $\Omega_{s}{ }^{2}$ positive:

$$
{ }_{s}^{2}=\frac{e \hat{V}_{R F} h_{s}}{2 R_{s} p_{s}} \cos { }_{s} \Rightarrow \quad{ }_{s}^{2}>0 \quad \cos _{s}>0
$$

Stable in the region if

Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the second order differential equation is non-linear:

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad\left(\Omega_{\mathrm{s}} \text { as previously defined }\right)
$$

Multiplying by $\dot{\phi}$ and integrating gives an invariant of the motion:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I
$$

which for small amplitudes reduces to:

(the variable is $\Delta \phi$, and ϕ_{s} is constant)

Similar equations exist for the second variable : $\Delta \mathrm{E} \propto \mathrm{d} \phi / \mathrm{d} \dagger$

Large Amplitude Oscillations (2)

When ϕ reaches $\pi-\phi_{s}$ the force goes to zero and beyond it becomes non restoring.
Hence $\pi-\phi_{s}$ is an extreme amplitude for a stable motion which in the phase space (-,) is shown as closed trajectories.

Equation of the separatrix:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
$$

Second value ϕ_{m} where the separatrix crosses the horizontal axis:

$$
\cos \phi_{m}+\phi_{m} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}
$$

Energy Acceptance

From the equation of motion it is seen that $\dot{\phi}$ reaches an extreme when $\ddot{\phi}=0$, hence corresponding to $\phi=\phi_{s}$.
Introducing this value into the equation of the separatrix gives:

$$
\cdot_{\max }^{2}=2{ }_{s}^{2}\left\{2+\left(2_{s}\right) \tan { }_{s}\right\}
$$

That translates into an acceptance in energy:

$$
\begin{aligned}
& \left(\frac{\Delta E}{E_{s}}\right)_{\max }=\mp \beta \sqrt{-\frac{e \hat{V}}{\pi h \eta E_{s}} G\left(\phi_{s}\right)} \\
& G\left({ }_{s}\right)=2 \cos { }_{s}+\left(2_{s}\right) \sin { }_{s}
\end{aligned}
$$

This "RF acceptance" depends strongly on ϕ_{s} and plays an important role for the capture at injection, and the stored beam lifetime.
It's largest for $\phi_{s}=0$ and $\phi_{s}=\pi$ (no acceleration, depending on η).
Need a higher RF voltage for higher acceptance.

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET".

As the synchronous phase gets closer to 90° the buckets gets smaller.

The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for ϕ_{s} $=180^{\circ}$ (or 0°) which correspond to no acceleration. The RF acceptance increases with the RF voltage.

Stationnary Bucket - Separatrix

This is the case $\sin \phi_{s}=0$ (no acceleration) which means $\phi_{s}=0$ or π. The equation of the separatrix for $\phi_{s}=\pi$ (above transition) becomes:

$$
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2}
$$

$$
\frac{\dot{\phi}^{2}}{2}=2 \Omega_{s}^{2} \sin ^{2} \frac{\phi}{2}
$$

Replacing the phase derivative by the (canonical) variable W:

Stationnary Bucket (2)

Setting $\phi=\pi$ in the previous equation gives the height of the bucket:

$$
W_{b k}=\frac{C}{h c} \sqrt{\frac{e \hat{V} E_{s}}{2 h}}
$$

This results in the maximum energy acceptance:

$$
E_{\max }={ }_{r f} W_{b k}={ }_{s} \sqrt{2 \frac{e \hat{V}_{R F} E_{s}}{h}}
$$

The area of the bucket is: $\quad A_{b k}=2 \int_{0}^{2 \pi} W d \phi$
Since: $\quad \int_{0}^{2 \pi} \sin \frac{\phi}{2} d \phi=4$
one gets: $\quad A_{b k}=8 W_{b k}=8 \frac{C}{h c} \sqrt{\frac{e \hat{V} E_{s}}{2 h}} \quad \longrightarrow \quad W_{b k}=\frac{A_{b k}}{8}$

Effect of a Mismatch

Injected bunch: short length and large energy spread after $1 / 4$ synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower
($1 / 8$ period shown below) \Rightarrow can lead to filamentation and emittance growth

restoring force is non-linear

stationary bucket

accelerating bucket

Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I \quad \xrightarrow{\phi_{s}=\pi} \quad \frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=I
$$

 crosses the axis are symmetric with respect to $\phi_{s}=\pi$

$$
\begin{array}{r}
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2} \cos \phi_{m} \\
\dot{\phi}= \pm \Omega_{s} \sqrt{2\left(\cos \phi_{m}-\cos \phi\right)} \\
W= \pm W_{b k} \sqrt{\cos ^{2} \frac{m}{2} \quad \cos ^{2} \frac{2}{2}} \\
\cos ()=2 \cos ^{2} \frac{1}{2}
\end{array}
$$

Introductory CAS, Budapest, October 2016

Bunch Matching into a Stationnary Bucket (2)

Setting $\phi=\pi$ in the previous formula allows to calculate the bunch height:

$$
\begin{gathered}
W_{b}=W_{b k} \cos \frac{m}{2}=W_{b k} \sin \frac{\wedge}{2} \quad \text { or: } \quad W_{b}=\frac{A_{b k}}{8} \cos \frac{\phi_{m}}{2} \\
\longrightarrow\left(\frac{E}{E_{s}}\right)_{b}=\left(\frac{E}{E_{s}}\right)_{R F} \cos \frac{m}{2}=\left(\frac{E}{E_{s}}\right)_{R F} \sin \frac{1}{2}
\end{gathered}
$$

This formula shows that for a given bunch energy spread the proper matching of a shorter bunch (ϕ_{m} close to π, " small) will require a bigger RF acceptance, hence a higher voltage

For small oscillation amplitudes the equation of the ellipse reduces to:

$$
W=\frac{A_{b k}}{16} \sqrt{\wedge^{2}(\quad)^{2}} \longrightarrow\left(\frac{16 W}{A_{b k}{ }^{\prime}}\right)^{2}+\left(\overline{{ }^{2}}\right)^{2}=1
$$

Ellipse area is called longitudinal emittance

$$
A_{b}=\frac{-}{16} A_{b k}{ }^{\wedge}
$$

Effect of a Mismatch (2)

Evolution of an injected beam for the first 100 turns.
For a matched transfer, the emittance does not grow (left).

matched beam

mismatched beam - bunch length

Effect of a Mismatch (3)

Evolution of an injected beam for the first 100 turns.
For a mismatched transfer, the emittance increases (right).

matched beam

mismatched beam - phase error

Bunch Rotation

Phase space motion can be used to make short bunches.
Start with a long bunch and extract or recapture when it's short.

initial beam

Capture of a Debunched Beam with Fast Turn-On

Introductory CAS, Budapest, October 2016

Capture of a Debunched Beam with Adiabatic Turn-On

Generating a 25ns LHC Bunch Train in the PS

- Longitudinal bunch splitting (basic principle)
- Reduce voltage on principal RF harmonic and simultaneously rise voltage on multiple harmonics (adiabatically with correct phase, etc.)

Use double splitting at 25 GeV to generate 50ns bunch trains instead Introductory CAS, Budapest, October 2016

Production of the LHC 25 ns beam

1. Inject four bunches $\sim 180 \mathrm{~ns}, 1.3 \mathrm{eVs}$

Wait 1.2 s for second injection
2. Inject two bunches

$$
\sim 0.7 \mathrm{eVs}
$$

4. Accelerate from $1.4 \mathrm{GeV}\left(\mathrm{E}_{\text {kin }}\right)$ to 26 GeV

Production of the LHC 25 ns beam

5. During acceleration: longitudinal emittance blow-up: 0.7 - 1.3 eVs

6. Fine synchronization, bunch rotation \rightarrow Extraction!

The LHC25 (ns) cycle in the PS

\rightarrow Each bunch from the Booster divided by $12 \rightarrow 6 \times 3 \times 2 \times 2=72$

Triple splitting in the PS

Two times double splitting in the PS

Two times double splitting and bunch rotation:

- Bunch is divided twice using RF systems at $h=21 / 42(10 / 20 \mathrm{MHz})$ and $h=42 / 84(20 / 40 \mathrm{MHz})$
- Bunch rotation: first part h84 only + h168 (80 MHz) for final part

Potential Energy Function

The longitudinal motion is produced by a force that can be derived from a scalar potential:

$$
\frac{d^{2} \phi}{d t^{2}}=F(\phi) \quad F(\phi)=-\frac{\partial U}{\partial \phi}
$$

$$
U=-\int_{0}^{\phi} F(\phi) d \phi=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)-F_{0}
$$

The sum of the potential energy and kinetic energy is constant and by analogy represents the total energy of a non-dissipative system.

Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the $1^{\text {st }}$ order equations:

$$
W=\frac{E}{r f}=2 \quad R_{s} p \longrightarrow \begin{aligned}
& \frac{d t}{p_{s} R_{s}} W \\
& \frac{d W}{d t}=\frac{1}{2 h} e \hat{V}\left(\sin \quad \sin \quad{ }_{s}\right)
\end{aligned}
$$

The two variables ϕ, W are canonical since these equations of motion can be derived from a Hamiltonian $H(\phi, W, t)$:

$$
\begin{array}{cc}
\frac{d \phi}{d t}=\frac{\partial H}{\partial W} & \frac{d W}{d t}=-\frac{\partial H}{\partial \phi} \\
H(, W, t)=\frac{1}{2 h} e \hat{V} \cos \quad \cos { }_{s}+(\quad s) \sin { }_{s} \frac{1}{2} \frac{h}{p_{s} R_{s}} W^{2}
\end{array}
$$

Summary

- Cyclotrons/Synchrocylotrons for low energy
- Synchrotrons for high energies constant orbit, rising field and frequency
- Particles with higher energy have a longer orbit (normally) but a higher velocity
- at low energies (below transition) velocity increase dominates
- at high energies (above transition) velocity almost constant
- Particles perform oscillations around synchronous phase
- synchronous phase depending on acceleration
- below or above transition
- bucket is the region in phase space for stable oscillations
- matching the shape of the bunch to the bucket is important

Bibliography

M. Conte, W.W. Mac Kay An Introduction to the Physics of particle Accelerators
(World Scientific, 1991)
P. J. Bryant and K. Johnsen The Principles of Circular Accelerators and Storage Rings
(Cambridge University Press, 1993)
D. A. Edwards, M. J. Syphers An Introduction to the Physics of High Energy Accelerators (J. Wiley \& sons, Inc, 1993)
H. Wiedemann

Particle Accelerator Physics
(Springer-Verlag, Berlin, 1993)
M. Reiser Theory and Design of Charged Particles Beams
(J. Wiley \& sons, 1994)
A. Chao, M. Tigner
K. Wille
E.J.N. Wilson

Handbook of Accelerator Physics and Engineering
(World Scientific 1998)
The Physics of Particle Accelerators: An Introduction
(Oxford University Press, 2000)
An introduction to Particle Accelerators
(Oxford University Press, 2001)

And CERN Accelerator Schools (CAS) Proceedings

Acknowledgements

I would like to thank everyone for the material that I have used.

In particular (hope I don't forget anyone):

- Joël Le Duff (from whom I inherited the course)
- Rende Steerenberg
- Gerald Dugan
- Heiko Damerau
- Werner Pirkl
- Genevieve Tulloue
- Mike Syphers
- Daniel Schulte
- Roberto Corsini
- Roland Garoby
- Luca Bottura
- Berkeley Lab
- Edukite Learning

