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Bernhard Holzer, CERN  

Introduction to Transverse Beam Dynamics 

* 

 The „ not so ideal world “   

IV.) Scaling Laws, Mini Beta Insertions, 
and all the rest 

17.) Quadrupole Errors    
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go back to Lecture I, page 1 
 

        single particle trajectory  

Quadrupole Errors 

Definition: phase advance  
of the particle oscillation  
per revolution in units of 2π  
is called  tune 
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Transfer Matrix from point „0“ in the  
lattice to point „s“:  

For one complete turn the Twiss parameters  
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Quadrupole Error in the Lattice 
  

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

ideal storage ring quad error 
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remember the old fashioned trigonometric stuff and assume that the error is small !!!  
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    !     the tune shift is proportional to the β-function  
        at the quadrupole 
 

  !!    field quality, power supply tolerances etc are  
        much tighter at places where β is large 
 

  !!!    mini beta quads: β ≈ 1900 m  
        arc quads: β ≈ 80 m  
 

  !!!!    β is a measure for the sensitivity of the beam 
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a quadrupol error leads to a shift of the tune: 

Example: measurement of β in a storage ring: 
                 tune spectrum 
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Quadrupole error: Beta Beat  
                                  

( proof: see appendix ) 
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18.) Chromaticity:  
           A Quadrupole Error for Δp/p ≠ 0 

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  
 

   

dipole magnet 
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Chromaticity: Q' 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 

0p p p= +Δ

kkg
p
p

p
e

pp
egk Δ+=

Δ
−≈

Δ+
= 0

000

)1(

0
0

k
p
pk Δ

−=Δ

dssk
p
pQ )(

4
1

0
0

β
π
Δ

−=Δ

€ 

Q'= − 1
4π

k(s)β(s)ds∫;'
p
pQQ Δ

=Δ



6 

Where is the Problem ? 

Tunes and Resonances  

avoid resonance conditions:  

m Qx+n Qy+l Qs = integer 

… for example: 1 Qx=1 
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Problem: chromaticity is generated by the lattice itself !! 
 
Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
   ! it is determined by the focusing strength k of all quadrupoles 

k = quadrupole strength 
β = betafunction indicates the beam size … and even more the sensitivity of   
      the beam to external fields 

Example: LHC 
 
                     Q' = 250  

      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 
                  

à Some particles get very close to  
    resonances and are lost  
 
    in other words: the tune is not a point 
                          it is a pancake 

… and now again about Chromaticity: 

€ 

Q'= − 1
4π

k(s)β(s)ds∫

Tune signal for a nearly  
uncompensated cromaticity 
( Q' ≈ 20 )  

Ideal situation: cromaticity well corrected, 
( Q' ≈ 1 ) 
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Tune and Resonances 

m*Qx+n*Qy+l*Qs = integer 

Qx =1.0 Qx =1.3 

Qy =1.0 

Qy =1.3 

Qx =1.5 

Qy =1.5 HERA e Tune diagram up to 3rd order 

… and  up to 7th order 

Homework for the operateurs:  
find a nice place for the tune  
where against all probability  
the beam will survive 

Correction of Q': 

 Need: additional quadrupole strength for each momentum deviation Δp/p 

1.) sort the particles acording to their momentum 

… using the dispersion function 

2.) apply a magnetic field that rises quadratically with x (sextupole field)  

linear amplitude dependent  
„gradient“:  
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N 

Sextupole Magnets:  

Correction of Q': 

S 

S N 

k1 normalised quadrupole strength  

k2 normalised sextupole  strength  

€ 

Q'= − 1
4π

k1(s)β(s)ds∫ + k2 *D(s)β(s)ds∫{ }

Combined effect of „natural chromaticity“ and Sextupole Magnets:  

You only should not forget to correct Q‘ in both planes ...  
 and take into account the contribution from quadrupoles of both polarities.  

  

€ 

Q'x = −
1

4π F quad
∑ kqf ˆ β x lqf −

D quad
∑ kqd

⌣ 
β x lqd

& 
' 
( 

) ( 

* 
+ 
( 

, ( 
+

1
4π F sext
∑ k2

F lsext Dx
Fβx

F −
1

4π D sext
∑ k2

Dlsext Dx
Dβx

D

  

€ 

Q'y = −
1

4π
−

F quad
∑ kqf

⌣ 
β ylqf +

D quad
∑ kqd ˆ β ylqd

& 
' 
( 

) ( 

* 
+ 
( 

, ( 
−

1
4π F sext
∑ k2

F lsext Dx
Fβx

F +
1

4π D sext
∑ k2

Dlsext Dx
Dβx

D

corrected chromaticity 

considering an arc built out of single cells:  
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      20.) Insertions  

yx,β

D

 Insertions 

 ... the most complicated one: the drift space 

Question to the audience: what will happen to the beam parameters  
      α, β, γ if we stop focusing for a while …? 
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β-Function in a Drift: 

let‘s assume we are at a symmetry point in the center of a drift.  

2
0 0 0( ) 2s s sβ β α γ= − +
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α γ
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and we get for the β function in the neighborhood of the symmetry point 

! ! ! 
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At the end of a long symmetric drift 
space the beta function reaches its 
maximum value in the complete lattice.  
-> here we get the largest beam 
dimension.  
 
-> keep l as small as possible  

... clearly there is another problem !!! 

Example: Luminosity optics at LHC: β* = 55 cm 
                for smallest βmax we have to limit the overall length   
              and keep the distance “s” as small as possible. 

But: ... unfortunately ... in general  
         high energy detectors that are  
         installed in that drift spaces  
         are a little bit bigger than a few centimeters ... 
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p2-Bunch 

p1-Bunch 
IP 

± σ  
10 11 particles 

10 11 particles 

21.) Luminosity 
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   High Light of the HEP-Year 2012 / 13 naturally the HIGGS   

ATLAS event display: Higgs => two electrons & two muons 
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Overall cross section of the  Higgs: 

Problem: Our particles are VERY small !! 

€ 

Σreact ≈1pb

1b =10−24cm2

1pb = 10−12 *10−24cm2 =1/mio*1/mio*1/mio*1/mio*1/mio*1/10000 mm2

The particles are “very small” The only chance we have: 
compress the transverse beam size … at the IP 

LHC typical:  
 

σ = 0.1 mm   !  16 µm   

Mini-β Insertions: some guide lines


  * calculate the periodic solution in the arc 
 

     * introduce the drift space needed for the insertion device (detector ...) 
 

  * put a quadrupole doublet (triplet ?) as close as possible 
 

  * introduce additional quadrupole lenses to match the beam  parameters 
     to the values at the beginning of the arc structure 

 
 

 
 

parameters to be optimised & matched to the periodic solution: 

, ,
, ,
x x x x

y y x y

D D
Q Q

α β

α β

ʹ′

8 individually  
powered quad  
magnets are  
needed to match   
the insertion  
( ... at least) 
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Mini-β Insertions: Betafunctions


A mini-β insertion is always a kind of special symmetric drift space. 
 àgreetings from Liouville 

at a symmetry point β is just the ratio of beam dimension and beam divergence. 
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question: main contribution to Q' in a lattice … ?                                       

… and now back to the Chromaticity 

mini beta insertions 
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Resume´: 
 

quadrupole error:  tune shift  

 beta beat  

chromaticity  
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a change of quadrupole strength in a synchrotron leads to tune sift: 
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tune spectrum ...  

tune shift as a function of a gradient change 
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 Quadrupole Error and Beta Function 

But we should expect an error in the β-function as well … 
                  … shouldn´t  we ??? 

Appendix: 
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Quadrupole Errors and Beta Function 

split the ring into 2 parts, described by two matrices 
A and B  

ABMturn *=

a quadrupole error will not only influence the oscillation frequency … „tune“  
 … but also the amplitude … „beta function“ 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211

aa
aa

A

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211

bb
bb

B

ρ 

s0 

ẑ
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the beta function is usually obtained via the matrix element „m12“, which is in  
Twiss form for the undistorted case 

Qm πβ 2sin012 =

kdsabababm Δ−+= 121222121211
*
12

and including the error:  

Qm πβ 2sin012 =

kdsbaQm Δ−= 12120
*
12 2sin)1( πβ

As M* is still a matrix for one complete turn we still can express the element m12  
in twiss form: 

)(2sin*)()2( 0
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12 dQQdm ++= πββ

Equalising (1) and (2) and assuming a small error 
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dQQdQQdkdsbaQ ππππββπβ 2sin2cos2cos2sin*)(2sin 012120 ++=Δ−

≈  1                      ≈2πdQ  
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QdQdQdQdQQkdsbaQ ππβπβππβπβπβ 2cos22sin2cos22sin2sin 000012120 +++=Δ−
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ignoring second order terms 
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    Nota bene:  !  the beta beat is proportional to the strength of the 
     error Δk 

 
  !! and to the β function at the place of the error , 

 
  !!! and to the β function at the observation point,  

            (… remember orbit distortion !!!) 
   
  !!!! there is a resonance denominator 

 
         


