

Basics of Accelerator Science and Technology at CERN

Magnet power supplies

Jean-Paul Burnet

CAS, Budapest, 08/10/2016

Definition

- What is special for powering magnets?
- Power supplies requirements
 - Circuit parameters
 - Circuit optimization
 - Power supplies ripples
 - Grounding
 - Magnet protections
 - > Current cycles
 - Power supply types
- Power electronics
 - Thyristor technology
 - IGBT technology
 - Power supply association
 - Nested circuits
 - Energy management
 - Discharged power supplies
- Power supply control
 - Control architecture
 - > High precision measurement
 - Current regulation
- What should specify an accelerator physicist?

Definition

Wikipedia: A power supply is a device that supplies electric power to an electrical load.

Power supplies are everywhere: Computer, electronics, motor drives,...

Here, the presentation covers only the very special ones for particles accelerators : Magnet power supplies

Power supply # power converter US labs uses magnet power supply CERN accelerator uses power converter CERN experiment uses power supply

Introduction

This talk will describe the beginning of a project for a new particles accelerator.

Before any design of power supplies, the first step is to write a functional specification which describes the powering of the accelerator and the performance required by the power supplies.

Many technical points have to be raised and worked for optimization.

The main loads of a particles accelerator are the magnets and the radiofrequency system.

The magnet families are :

Dipole: Bend the beam

Quadrupole: focus the beam

Sextupole: correct chromaticity

Octupole: Landau damping

Skew: coupling horizontal&vertical betatron oscillations

http://cas.web.cern.ch/CAS/Belgium-2009/Lectures/Bruges-lectures.htm

For beam transfer, special magnets are needed. The families are :

Kicker generators are very special and generally handled by kicker people.

http://cas.web.cern.ch/CAS/Belgium-2009/Lectures/Bruges-lectures.htm

For the radio frequency system, the RF power comes through power amplifiers. The families of RF power amplifiers are :

Solid state amplifier, Low power, 100V, 1–100kW

Tetrode, Medium power, 10kV, 100kW

IOT, Medium power, 20-50kV, 10-100kW

Klystron, High power RF, 50-150kV, 1-150MW

http://cas.web.cern.ch/CAS/Denmark-2010/Lectures/ebeltoft-lectures.html

In a synchrotron, the beam energy is proportional to the magnetic field.

The magnet field is generated by the current circulating in the magnet coils.

The dipole magnets shall have a high field homogeneity which means a high current stability. The good field region is defined typically within $\pm 10^{-4} \Delta B/B$.

The relation between the current and B-field isn't linear due to magnetic hysteresis and eddy currents.

For superconducting magnet, the field errors (due to eddy currents) can have dynamic effects.

$$\vec{B}_{y} + i\vec{B}_{x} = \sum_{n=1}^{\infty} C_{n} \left(\frac{z}{R_{ref}}\right)^{n-1} = B_{1} \sum_{n=1}^{\infty} \frac{(b_{n} + ia_{n})}{10^{4}} \left(\frac{z}{R_{ref}}\right)^{n-1}$$

Decay is characterised by a significant drift of the multipole errors when the current in a magnet is held constant, for example during the injection plateau. When the current in a magnet is increased again (for example, at the start of the energy ramp), the multipole errors bounce back ("snap back") to their pre-decay level following an increase of the operating current by approximately 20 A.

For the energy ramp such as described in [3], the snapback takes 50-80 seconds but this can vary if, for example, the rate of change of current in the magnet is changed.

http://accelconf.web.cern.ch/accelconf/e00/PAPERS/MOP7B03.pdf

Measuring the magnetic field is very difficult and needs a magnet outside the tunnel.

In most of the synchrotrons, all the magnets (dipole, quadrupole, sextupole, orbit correctors,...) are current control.

The beam energy is controlled by the current of the dipole magnet.

To operate a synchrotron, operator needs to measure the beam position with pick-up.

From control room: Is my accelerator an Ampere meter ?

Solutions for magnetic field control

To solve this problem of hysteresis, the classical degauss technique is used.

For a machine working always at the same beam energy, few cycles at beam energy will degauss the magnets. Example LHC precycle.

For machine or transfer line with different beam energies, the degauss has to take place at each cycle. Solution, always go at full saturation in each cycle.

Solutions for magnetic field control

Measuring the magnetic field is very difficult and need a magnet outside the tunnel equipped with magnetic sensors.

In most of the synchrotrons, all the magnets (quadrupole, sextupole, orbit correctors,...) are current control and the beam energy is controlled by the dipole magnet current.

For higher performance, the solutions are :

- Get a high-precision magnetic field model (10⁻⁴)
- Real time orbit feedback system
- Real time tune feedback
- Real time chromaticity feedback
 - Or
 - Real-time magnetic field measurement and control (10⁻⁴)

How an operator change the beam energy with a synchrotron?

To ramp up, the operator increases the dipole magnetic field.

The radiofrequency is giving the energy to the beam, but the RF is automatically adjusted to follow the magnetic field increase (Bdot control).

Power supply requirements

Now, you know that accelerators need high precision power supplies.

What are the main parameters you should define with

accelerator physicists&magnet designers?

Don't let the accelerator physicists work alone with the magnet designers.

Powering optimization plays with magnet parameters

The power engineers have to be included in the accelerator design from the beginning!

Power supply requirements

Many points need to be defined :

Power supply control

Power part

Power supply performance

Magnet & circuit optimization

Power supply infrastructure

Magnet parameters

Magnet parameters seen by the power supplies:

- Inductance, in mH
- Resistance, in $m\Omega$
- Current limits
- Voltage limits (insulation class)
- di/dt limits

much better, magnet model including saturation effect.

Load Saturation model

Magnet parameters

Even better, magnet model between B-field and current (impact of the vacuum chamber).

Impact of the vacuum pipe on the magnet transfer function

Impact of the vacuum pipe on the magnetic field

Power supply & magnet optimization

The powering optimization plays with the magnet parameters, the power supply parameters and the circuit layout.

For the same integral field, the magnet can be done in different ways.

Ν

J

The magnet parameters are:

- Number of turns per coil
- Maximum current
- Current density in the conductor
- Length/field strength of the magnet

Advantages of large N

- Lower I
- Lower losses in DC cables
- Better efficiency of power supply
- Drawbacks of large N
- Higher voltage
- Magnet size (coil are bigger due to insulation)

 $B=\mu_0 NI/g$

Magnet optimization

Advantages of lower J

- Lower losses in magnet
- Less heat to dissipate in air or water

Drawbacks

- Higher capital cost
- Larger magnets

Global optimization shall be done including capital investment, cooling system and energy consumption.

Example of magnet optimization

HL-LHC new Q4 (quadrupole magnet in the interaction region).

First design with single coil layer: $L_{manget} = 6mH$, $I_{nominal} = 15.6kA$ Advantage:

- simple coil

Drawback:

- High current = costly powering system
- Low inductance = poor stability of the magnet current
- Second design, with double coil layer: $L_{manget} = 74mH$, $I_{nominal} = 4.5kA$ Advantage:
- High current stability (1ppm)
- Low powering cost

Drawbacks:

- Magnet more complex
- Magnet more expensive

Global cost reduced and performance required by accelerator physicists reached.

Magnet cost versus energy consumption

DC magnets have a solid yoke which prevents to pulse it. They are used for economical raisons in experimental areas or transfer lines.

Their eddy currents need a long decay time to disappear (tens of second to minutes). The yoke represents ~50% of the magnet cost.

If the beam isn't present all the time, then big saving can be achieved by pulsing the magnets. The energy consumption is proportional to beam duty cycle.

- DC magnet advantages
- Cheap magnets
- Simple powering scheme
- DC magnet Drawback
- High energy consumption

Circuit layout

The magnets can be powered individually or in series.

Individually:

- increase flexibility of beam optic
- B-field can be different depending of the cycles (hysteresis)
- Global cost is higher, more DC cables, more power supplies
- Needed when the voltage goes too high (>10kV magnet class)
- Needed when the energy stored is too big (superconducting magnets)

Series connected:

- B-field identical
- Rigid optic. Need trim power supplies to act locally.
- Global cost reduced, less DC cables, less power supplies but bigger in power rating.

Magnet in series

SMQ Converters

Individual powered magnet

For synchrotron source lights, the quadrupole are generally individually powered to adjust the beam size (beta function) for each users (corresponding to a Fodo cell). Example, SESAME cell.

Splitting the magnet circuit

Power supply ripples

The acceptable current ripple has to be fixed by the accelerator physicists.

In fact, it is the maximum B-field ripple which needs to be determined.

From the B-field ripple, we can determine the current ripple and then, fix the voltage ripple.

Voltage ripple is generated by the power supply

Current ripple Depends of the load

Current ripple is defined by load transfer function (cables & magnet)

B-Field ripple is depends on magnet transfer function (vacuum chamber,...)

Power supply ripples

Power supply ripples specification

The voltage ripple has to be specified for all frequencies.

- <50Hz: for regulation performance
- 50-1200Hz: for grid disturbance
- 1-150kHz: for power supply switching frequency

>150kHz: for EMC

Magnet grounding

For safety reasons, the magnet shall be isolated from the mains. The power supply needs an insolation transformer in its topology.

The magnets shall be connected to the ground somewhere, they can't be left floating with parasitic capacitances.

One polarity can be connected directly to the ground, or via a divider for a better voltage sharing.

The ground current shall be monitor.

Grounding

Particles accelerators are very sensitive to EMC (conducted and radiated noise).

Need a meshed earth !

But continuously seam-welded or conductively-gasketed joints are best (1

http://indico.cern.ch/getFile.py/access?cont ribId=44&sessionId=9&resId=0&materialId =slides&confId=85851

Grounding

Appling good EMC rules to power supplies:

Magnet protection

The magnets shall have its own interlock system. For warm magnets, it is quite simple (water flow, thermostat, red button,...). For superconducting magnets, it is quite complex (quench protection).

This interlock system shall request a power abort to the power supply.

Be careful, magnets are inductive load, the circuit can't be opened ! The power supply shall assure a freewheeling path to the current.

It can be inside the power supply for warn magnet,

or outside for superconducting magnet.

Magnet cycle

The way that the magnets will be operated has to be defined from the beginning.

Power supply types

Power electronics

Power electronics is the application of solid-state electronics for the control and conversion of electric power.

Power electronics started with the development of mercury arc rectifier. Invented by Peter Cooper Hewitt in 1902, the mercury arc rectifier was used to convert alternating current (AC) into direct current (DC).

The power conversion systems can be classified according to the type of the input and output power

- > AC to DC (rectifier)
- > DC to AC (inverter)
- > DC to DC (DC-to-DC converter)
- > AC to AC (AC-to-AC converter)

Switching devices

Nowadays, the main power semiconductors are:

Thyristor principle

Thyristor (1956): once it has been switched on by the gate terminal, the device remains latched in the on-state (*i.e.* does not need a continuous supply of gate current to remain in the on state), providing the anode current has exceeded the latching current (I_L). As long as the anode remains positively biased, it cannot be switched off until the anode current falls below the holding current (I_H).

Turn ON possible when positive voltage

Topologies based on thyristor

The magnets need DC current.

The magnet power supplies are AC/DC.

The magnets need a galvanic isolation from the mains: 50Hz transformer

The thyristor bridge rectifier is well adapted to power magnets.

Thyristor advantages

- Very robust
- Cheap
 - Low losses

Thyristor drawbacks

- Sensible to mains transients
- Low losses
- Low power density

Diode bridge rectifier

3 phases diode bridge voltage rectification

- Bridge output voltage is fixed, 1.35 * U line to line

· 3 phases Thyristor bridge voltage rectification

- Can control the bridge output voltage by changing the firing angle $\boldsymbol{\alpha}$
- Vout = Umax * $\cos \alpha$

• $\alpha = 15^{\circ}$, Vout = 0.96 * Umax • $\alpha = 70^{\circ}$, Vout = 0.34 * Umax • $\alpha = 150^{\circ}$, Vout = -0.86 * Umax

• Maximum voltage, α = 15°

-Transformer line current at maximum voltage, α = 15°

- The diode bridge current is in phase with the voltage
- For the thyristor rectifier, the AC line current is shifted with the angle α

Power analysis

- Power:
- Active power:
- Apparent power: $S = \sqrt{P^2 + Q^2}$
- Power factor:

 $P(t) = V_r(t) * I_r(t) + V_s(t) * I_s(t) + V_T(t) * I_T(t)$ $P = 3 * V_r * I_{Line rms} * \cos \alpha$ • Reactive power: $Q = 3 * V_r * I_{Line rms} * sin \alpha$ $P/S = \cos \alpha$

• *α* = 15°

- Active power high
- Reactive power low

• At flat top, α = 70°

Full current / low DC voltage

• Transformer line current at flat top (at α = 70°)

Q

Ρ

Q

Power analysis

- Active power:
- Apparent power: $S = \sqrt{P^2 + Q^2}$

- Active power low
- Reactive power high

▶ P

Reactive power compensation

Reactive power must be compensated.

Power factor > 0.93 for EDF.

Affect the mains voltage stability.

Solution :SVC: Static VAR Compensator, Qc

Reactive power compensation

SVC role on the 18kV

- Compensate reactive power (Thyristor Controlled Reactor)
- Clean the network (harmonic filters)
- Stabilize the 18kV network (>±1%)

Thyristor rectifier example

Example: LHC dipole converter 13kA/180V

Thyristor rectifier example

Thyristor rectifier

Limitation a low current due to discontinuity of current

Topologies based on IGBT

What is an IGBT ?

The IGBT combines the simple gate-drive characteristics of the <u>MOSFETs</u> with the high-current and low-saturation-voltage capability of <u>bipolar transistors</u>.

The main different with thyristor is the ability to control its turn ON and turn OFF.

Many topologies can be built using IGBT.

IGBT

Real IGBT turn-on and turn-off:

Very fast di/dt, dv/dt => EMC

Switching losses => thermal limitation

IGBT

Thermal cycling of the IGBT

IGBT bonding can break after few thousand of thermal cycles

Power Cycling: Medium & High Power Modules (Tjmax = 125°C)

Power electronics basic concept

The basic principle is to command a switch to control the energy transfer to a load. Example of a BUCK converter:

Power electronics basic concept

The switch S is switched ON during a short period which is repeated periodically.

The output voltage can be controlled by playing with the duty cycle α .

Power electronics basic concept

Most of the time, PWM (Pulsed Width Modulation) technique is used to control the switches. A triangular waveform is compared to a reference signal, which generates the PWM command of the switch.

Topologies based on IGBT

The magnets need DC current.

The magnet power supplies are AC/DC. The topologies are with multi-stages of conversion.

The magnets need a galvanic isolation from the mains: cases with 50Hz transformer

50Hz AC/DC stage

High-frequency DC/DC stage

CERN

Transformer technologies

Two technologies are used for power transformers: laminated magnetic core (like magnet):

> 50Hz technology High field (1.8T) Limitation due to eddy current Low power density High power range

kHz technology

Low field (0.3T)

Nonconductive magnetic material, very low eddy current

High power density

Low power range (<100kW)

Topologies with HF transformer

In this case, it is multi-stages converter with high-frequency inverters

Switch-mode power supply with HF inverter

Example: LHC orbit corrector, ±120A/±10V

Converter association

When the power demand increases above the rating of the power semiconductor, the only solution is to build a topology with parallel or series connection of sub-system.

Parallel connection of sub-converters

Redundancy implementation, n+1 sub-converters Can work with only n sub-converters

Parallel connection with thyristor rectifier

Series connection of sub-converters

Example: SPS dipole power supply, 6kA/24kV

12 power supplies in series between magnets. Each power supply gives 6kA/2kV.

In total 24kV is applied to the magnets.

Nested powering scheme is popular with accelerator physicists and magnet designers.

Allows association of different magnets or to correct local deviation over a long series of magnets.

Main reasons: saving on DC cables, current leads, lower power supply rating,...

Nested powering scheme is a nightmare for power engineers !!

Very complex control, it is like a car with many drivers having a steering wheel acting on only one wheel.

Very difficult to operate and repair, long MTTR.

All power supplies have to talk each others.

Need a decoupling control to avoid fight between power supplies !

Look at the current and voltage of RQX while RTQX2 current is changing!

Nested circuits aren't RECOMMANDED !

LHC inner triplet works perfectly well but MTTR is very high.

RHIC had many difficulties with nested circuits.

Energy management

Magnets need voltage to move their current:

Vmagnet(t) = Rmg * Img(t) + Lmg * dImg(t)/dt

Example with the PS main magnets

Power(t) = I_magnet(t) x V_magnet(t)

The peak power needed for the main magnets is ±40MW with a dynamic of 1MW/ms The average power is only 4MW !!!

The challenge: Power a machine which needs a peak power 10 times the average power with a very high dynamic !!!

New concept for energy management

The energy to be transferred to the magnets is stored in capacitors The capacitor banks are integrated in the power supply

- DC/DC converters transfer the power from the storage capacitors to the magnets.
- Four flying capacitors banks are not connected directly to the mains. They are charged via the magnets
- Only two AC/DC converters (called chargers) are connected to the mains and supply the losses of the system and of the magnets.

New concept for energy management

POPS: POwer converter for the PS main magnets.

POPS example

Example: POPS 6kA/±10kV

Energy management

Capacitor banks

- 5kV Dry capacitors
- Polypropylene metalized self healing
- Outdoor containers: 2.5m x 12m, 18 tons
- 0.247F per bank, 126 cans
- 1 DC fuse
- 1 earthing switch
- 3 MJ stored per bank
- 60 tons of capacitors divided in
- 6 capacitor banks making in total 18.5MJ
- Up to 14MJ can be extracted during a cycle!
- The capacitors represent 20% of the total system cost.

Energy management

Best optimization : Max power taken on the mains # magnet average power

Discharged power supplies

Synchrotrons

Beam is injected, accelerated and extracted in several turns

Rise and fall time < few ms

Linac's and transfer lines

Beam is passing through in one shot, with a given time period;

Direct Energy transfer from mains is not possible:

Intermediate storage of energy Peak power : could be > MW Average power kW

Discharged power supplies

Example of LINAC4 Klystron modulator

Specification	symbol	Value	unit
Output voltage	V _{kn}	110	kV
Output current	I _{out}	50	Α
Pulse length	$t_{rise} + t_{set} + t_{flat} + t_{fall}$	1.8	ms
Flat-Top stability	FTS	<1	5
Repetition rate	1/T _{rep}	2	Hz

Peak power : 5.5MW Average power: 20kW

Power supply control

Power supply control

The power supply are controlled by the global control system.

They need to be synchronized => Timing Locally, a fieldbus (must be deterministic) is used to communicate with a gateway, WORLDFIP in the LHC

ETHERNET for LINAC4

In each power supply, an electronic box (FGC) manages the communication, the state machine and do the current control.

Real time software is implemented.

Power supply control

High-precision definition

Accuracy characterisation

The term Accuracy is a qualitative concept, used to describe the quality of a measurement. At CERN (and elsewhere) a measurement's systems capability is often characterized in terms of Gain and Offset errors, Linearity, Repeatability, Reproducibility and Stability.

Linearity:

Difference in the systematic error of a measuring device, throughout its range.

Gain and Offset errors:

They are systematic errors that relate to the trueness of a measurement.

The offset error refers to the systematic error at zero and the gain error to the systematic error at full scale.

Stability:

Measurement of the change in a measurement system's Systematic errors with time. We can more specifically refer to Gain Stability or Offset Stability.

Noise can also be seen as a measurement of a device's stability, although normally the term stability is used only for the low frequency range (\leq Hz).

http://te-epc-lpc.web.cern.ch/te-epclpc/sensors/definitions.stm

Current measurement technologies

	DCCTs	Hall effect	CTs	Rogowsky	Shunts
			\$		
Principle	Zero flux detection	Hall effect	Faraday's law	Faraday's law	Ohm's law
Output	Voltage or current	Voltage or current	Voltage	Voltage	Voltage
Accuracy	Best devices can reach a few ppm stability and repeatability	Best devices can reach 0.1%	Typically not better than 1%	Typically %, better possible with digital integrators	Can reach a few ppm for low currents, <% for high currents
Ranges	50A to 20kA	hundreds mA to tens of kA	50A to 20kA	high currents possible, up to 100kA	From <ma to="" to<br="" up="">several kA</ma>
Bandwidth	DCkHz for the higher currents, DC100kHz for lower currents	DC up to couple hundred kHz	Typically 50Hz up to a few hudreds of kHz	Few Hz possible, up to the MHz	Up to some hundreds of kHz with coaxial assemblies
Isolation	Yes	Yes	Yes	Yes	No
Error sources	Magnetic (remanence, external fields, centering) Burden resistor (thermal settling, stability, linearity, tempco) Output amplifier (stability, noise, CMR, tempco)	Magnetic Burden resistor Output amplifier Hall sensor stability (tempco, piezoelectric effect)	Magnetic (remanence, external fields, centering, magnetizing current) Burden resistor	Magnetic Integrator (offset stability, linearity, tempco)	Power coefficient, tempco, ageing, thermal voltages

High-precision Current measurement chain

Signal conditioning and filtering

Precision amplifier and burden

High-resolution ADC

LHC class specification

Converter category	Accuracy Class	½ hour stability	24h stability	1 year stability
Main Dipoles	Class 1	3	5	50
Main quadrupoles	Class 1	3	5	50
Inner Triplets	Class 1	3	5	50
Separation dipoles, Insertion quadrupoles	Class 2	5	10	70
600A multipole correctors	Class 3	10	50	200
120A orbit correctors	Class 4	50	100	1000
60A orbit correctors	Class 4	50	100	1000

LHC class 1 DCCT

LHC class 1 ADC

The CERN 22 bit Delta Sigma ADC

DS22 specification

Gain drift 1 year	20 ppm	
Offset drift 1 year	10 ppm	

LHC class 1 global accuracy

LHC resolution

Smallest increment that can be induced or discerned.

The resolution is expressed in ppm of maximum DCCT current. Resolution is directly linked to A/D system.

LHC resolution

Best resolution achieved = 1ppm

Current regulation

The performance of the current regulation is critical for a machine. Can be a nightmare for operators!

RST controller provides very powerful features: Manage the tracking error as well as the regulation.

Current regulation

Anti-windup is needed to control the saturation of the loop.

complex control loop

The real controller is shown below:

Current regulation

Tutorial is proposed here on the FGC currant regulation

https://project-cclibs.web.cern.ch/project-cclibs/download_tutorial.htm

Here you can find some examples

https://project-cclibs.web.cern.ch/project-cclibs/plots/tests/

What parameters should be specified ?

Magnet operation:

- Precision class
- Type of control: Current / B-field
- Maximum current ripple
 - Complete cycle
 - Injection current
 - Maximum dl/dt, ramp-up
 - Maximum flat top current
 - Maximum dl/dt, ramp-down
 - Return current
 - Cycle time
 - Degauss cycle / pre-cycle
 - Magnet protection system

Power supply functional specification

What shall contain the functional specification?

Short description of the machine Description of the loads

- Magnet layout
- Magnet parameters
- Optimization with integral cost and energy saving
- Description of the operation duty cycle
- Machine cycles
- Minimum and maximum beam energy
- Power supply requirements
- Power supply rating
- Current precision
- Current tracking
- Control system
- Energy management
- Lock-out and safety procedure
- Infrastructure (layout, Electricity, Cooling, handling...)
- Purchasing and development strategy
- Planning
- Budget
- Resource

Power supply delivery

From power supply functional specification

https://edms.cern.ch/document/829344/3

Power supply design

simulation

Component design

- 3D mechanical integration

Production

Laboratory Tests

On site commissioning

Minimum 18 months Up to 3 years when special development is needed.

Power supply procurement

From power supply functional specification

- > Power supply technical specification
- > Call for tender

- > Award of contract
- Design report
- Prototype acceptance
- Series production

https://edms.cern.ch/document/1292325

Minimum 6 months

Minimum 12 months

What is special with magnet power supplies?

The magnet power supplies are high-precision current control.

To build it, the technical solutions are out the industrial standard:

Powering a magnet isn't classical, and few one the shelf products can be used mainly custom power supplies

What is power electronics?

Power supplies are key devices for particles accelerators (like an engine in a car).

Operators in control room play with power supplies to control the beam.

Their performances have a direct impact on the beam quality.

Creativity is required in many technical fields!

More training : last <u>Special CAS on power converters</u> 7 – 14 May 2014 Baden (CH)

