Electron dynamics with Synchrotron Radiation

Lenny Rivkin

Paul Scherrer Institute (PSI) and Swiss Federal Institute of Technology Lausanne (EPFL)

H. Wiedemann, *Synchrotron Radiation* Springer-Verlag Berlin Heidelberg 2003

H. Wiedemann, *Particle Accelerator Physics I and II* Springer Study Edition, 2003

A.Hofmann, *The Physics of Synchrotron Radiation* Cambridge University Press 2004

A. W. Chao, M. Tigner, *Handbook of Accelerator Physics and Engineering*, World Scientific 1999

Synchrotron Radiation and Free Electron Lasers

Grenoble, France, 22 - 27 April 1996 (A. Hofmann's lectures on synchrotron radiation) CERN Yellow Report 98-04

Brunnen, Switzerland, 2 – 9 July 2003 CERN Yellow Report 2005-012

Previous CAS Schools Proceedings

Curved orbit of electrons in magnet field

Electromagnetic waves

Crab Nebula 6000 light years away

First light observed 1054 AD

GE Synchrotron New York State

First light observed 1947

GENERATION OF SYNCHROTRON RADIATION

Swiss Light Source, Paul Scherrer Institute, Switzerland

60'000 SR users world-wide

Why do they radiate?

Synchrotron Radiation is not as simple as it seems

... I will try to show that it is much simpler

Charge at rest Coulomb field, no radiation

Uniformly moving charge does not radiate

But! Cerenkov!

Free isolated electron cannot emit a photon

Easy proof using 4-vectors and relativity

momentum conservation if a photon is emitted

$$\boldsymbol{P}_i = \boldsymbol{P}_f + \boldsymbol{P}_{\gamma}$$

square both sides

$$m^2 = m^2 + 2P_f \cdot P_{\gamma} + 0 \Rightarrow P_f \cdot P_{\gamma} = 0$$

in the rest frame of the electron

 $\boldsymbol{P}_f = (m, 0) \qquad \boldsymbol{P}_{\gamma} = (E_{\gamma}, p_{\gamma})$

this means that the photon energy must be zero.

We need to separate the field from charge

Bremsstrahlung or "braking" radiation

Transition Radiation

Fields of a moving charge

$$\vec{\mathbf{E}}(t) = \frac{q}{4\pi\varepsilon_0} \left[\frac{\vec{\mathbf{n}} - \vec{\beta}}{\left(1 - \vec{\mathbf{n}} \cdot \vec{\beta}\right)^3 \gamma^2} \cdot \frac{1}{\mathbf{r}^2} \right]_{ret} +$$

$$\frac{q}{4\pi\varepsilon_0 c} \left[\frac{\vec{\mathbf{n}} \times \left[\left(\vec{\mathbf{n}} - \vec{\beta} \right) \times \vec{\beta} \right]}{\left(1 - \vec{\mathbf{n}} \cdot \vec{\beta} \right)^3 \gamma^2} \cdot \frac{1}{\mathbf{r}} \right]_{ret}$$

$$\vec{\mathbf{B}}(t) = \frac{1}{c} [\vec{\mathbf{n}} \times \vec{\mathbf{E}}]$$

Transverse acceleration

Radiation field quickly separates itself from the Coulomb field

Longitudinal acceleration

Radiation field cannot separate itself from the Coulomb field

Synchrotron Radiation Basic Properties

Moving Source of Waves

Cape Hatteras, 1999

Time compression

Electron with velocity β emits a wave with period T_{emit} while the observer sees a different period T_{obs} because the electron was moving towards the observer

The wavelength is shortened by the same factor

$$\lambda_{obs} = (1 - \beta \cos\theta) \lambda_{emit}$$

in ultra-relativistic case, looking along a tangent to the trajectory $\lambda_{obs} = \frac{1}{2\gamma^2} \lambda_{emit}$ since $1 - \beta = \frac{1 - \beta^2}{1 + \beta} \approx \frac{1}{2\gamma^2}$

Radiation is emitted into a narrow cone

Sound waves (non-relativistic)

Angular collimation

$$\lambda_{heard} = \lambda_{emitted} \left(1 - \frac{\mathbf{v}}{\mathbf{v}_s} \right)$$

Synchrotron radiation power

Power emitted is proportional to:

$$P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \cdot \frac{E^4}{\rho^2}$$

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3}\right]$$

The power is all too real!

ig. 12. Damaged X-ray ring front end gate valve. The power incident on the valve was approximately 1 kW for a duration estimated to 2-10 min and drilled a hole through the valve plate.

Synchrotron radiation power

Power emitted is proportional to:

 $P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \cdot \frac{E^4}{\rho^2}$

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3}\right]$$

Energy loss per turn:

Typical frequency of synchrotron light

Due to extreme collimation of light observer sees only a small portion of electron trajectory (a few mm)

Spectrum of synchrotron radiation

• Synchrotron light comes in a series of flashes every T_0 (revolution period)

 the spectrum consists of harmonics of

$$\omega_0 = \frac{1}{T_0}$$

 flashes are extremely short: harmonics reach up to very high frequencies

$$\omega_{typ} \cong \gamma^3 \omega_0$$

 $\omega_0 \sim 1 \text{ MHz}$ $\gamma \sim 4000$ $\omega_{\text{typ}} \sim 10^{16} \text{ Hz!}$

 At high frequencies the individual harmonics overlap

continuous spectrum !

Wavelength continuously tunable !

dP_	P_{tot}	(ω)
<mark>dω</mark>	ω_{c}	

$$S(x) = \frac{9\sqrt{3}}{8\pi} x \int_{x}^{\infty} K_{5/3}(x') dx' \qquad \int_{0}^{\infty} S(x') dx' = 1$$

$$\omega_{\rm c} = \frac{3}{2} \frac{\rm c \gamma^3}{\rho}$$

Synchrotron radiation flux for different electron energies

Angular divergence of radiation

The rms opening angle R'

• at the critical frequency:

$$\omega = \omega_{\rm c} \qquad \mathbf{R'} \approx \frac{0.54}{\gamma}$$

well below

$$\omega \ll \omega_{\rm c} \qquad \mathbf{R'} \approx \frac{1}{\gamma} \left(\frac{\omega_{\rm c}}{\omega}\right)^{\frac{1}{3}} \approx 0.4 \left(\frac{\lambda}{\rho}\right)^{\frac{1}{3}}$$

independent of γ !

well above

$$\omega \gg \omega_{\rm c} \qquad \mathbf{R'} \approx \frac{0.6}{\gamma} \left(\frac{\omega_{\rm c}}{\omega}\right)^{\frac{1}{2}}$$

Synchrotron light polarization

An electron in a storage ring

Polarization: Linear in the plane of the ring the electric field vector

TILTED VIEW

elliptical out of the plane

Angular distribution of SR

Synchrotron light based electron beam diagnostics

Seeing the electron beam (SLS)

 $\sigma_{x} \sim 55 \mu m$

X rays

visible light, vertically polarised

Seeing the electron beam (SLS)

Making an image of the electron beam using the vertically polarised synchrotron light

High resolution measurement

