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 Peter Forck: Lecture on Beam Instrumentation and Diagnostics at the Joint University Accelerator 
School (JUAS), 
see also the extended Bibliography 
http://www-bd.gsi.de/conf/juas/juas.html

 M.G. Minty and F. Zimmermann: Measurement and Control of Charged Particle Beams, Springer Verlag
2003, (book).

 Conference series: IBIC (International Beam Instrumentation Conference), IPAC (International Particle 
Accelerator Conference), historic: DIPAC (Workshop on Beam Diagnostics and Instrumentation for 
Particle Accelerators), BIW (Beam Instrumentation Workshop)

 CERN Accelerator Schools (CAS):
http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm and
http://cas.web.cern.ch/cas/CAS_Proceedings.html

 Rhodri Jones et al.: Introduction to Beam Instrumentation and Diagnostics, CERN-2014-009.

 Daniel Brandt (Ed.), 2008 CAS on Beam Diagnostics for Accelerators, Dourdan, CERN-2009-005 
(2009).

 Heribert Koziol, Beam Diagnostic for Acclerators, Univ. Jyväskylä, Finland, 1992, CERN 94-01, 
http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm

 Jacques Bosser (Ed.), Beam Instrumentation, CERN-PE-ED 001-92, Rev. 1994

Resources and References
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 Introduction

 Beam Position Monitors

 Beam Current Monitors

 Transverse Profile Monitors

 Beam Loss Measurement for Protection and Diagnostics

Overview – Part 1
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Introduction
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 Beam Instrumentation is a very wide subject; with a large range of technologies and fields 
involved, including:

 Accelerator physics
 understand the beam parameters to be measured
 distinguish beam effects from sensor effects

 Particle physics and detector physics
 understand the interaction of the beam with the sensor

 RF technology

 Optics

 Mechanics

 Electronics
 Analogue signal treatment
 Low noise amplifiers
 High frequency analogue electronics

 Digital signal processing
 Digital electronics for data readout

 Software engineering
 Front-end and Application Software

Introduction
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 Aim: assist in commissioning, tuning and operating the accelerator and to improve 
performance

 In this presentation:

 Explain working principles of some of the most important instruments

 Give indication on achievable performance

 Give selected examples from operating machines and current developments

Introduction, cont’d
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 Beam intensity

 Ideally: 6D phase space of the beam

 Real measurements: mean values and 1D-projection, some 2D-projections
 Transverse position (mean x, y)  trajectory and orbit

 Transverse profile

 Bunch length, bunch shape

 Mean momentum and momentum spread

 Emittance and 2D phase space reconstruction (transverse and longitudinal)

 Beam halo measurements

 Tune, chromaticity, coupling, beta function, dispersion

 Beam Losses

 Polarisation

 Luminosity

Measured Quantities
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 Singe pass machine (LINAC and transport lines, 
also dedicated measurement lines ↔ 
multi pass machine (synchrotron)

 Total Beam Energy (beam particles x particle 
energy) low ↔ high

 Non-intercepting ↔ Intercepting / Perturbing
↔ Destructive. Often depending on:

 Beam quantitates (intensity, energy, 
particle type)

 Single pass or multi pass 

 Different devices (techniques) to measure 
the same quantity ↔ Same device to 
measure different quantities

 Different Accelerator Laboratories have different names for the same type of device!

Classifications and Selected Devices
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Current transformers 

Faraday cup 

Pick-ups  

Secondary emission monitors    

Wire scanners    

Scintillator screens   

OTR screen  

Residual-gas profile monitors   

Beam loss monitors 
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 Radiation (single event effects, radiation ageing, activation)

 Many sources of measurement noise and background

 Place readout close to detector, but  radiation

 RF heating by the beam

 Accessibility and maintenance

 Sometimes: cryogenic temperatures

 Mostly: must operate in vacuum and be UHV compatible

Harsh Environment
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Beam Position Monitors
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 Among the most numerous instruments

 Measurements: 
 Transverse beam position (typically next to focusing elements)

 Beam trajectory or closed orbit

 injection oscillations

 Tune and lattice function in synchrotrons

Capacitive Pick-Ups for Bunched Beams

beam
trajectory

Focusing elements
(e.g. quadrupoles)

BPM Pickups

s

x, y

M. Wendt
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Capacitive Pick-Up – The Principle

Rhodri Jones, CAS 2011
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 Image current in vacuum 
chamber walls: equal size and 
opposite sign of the AC beam 
component

 Monitor the induced charge with 
a plate inserted in the beam 
pipe



Eva Barbara HolzerCAS intr. Level course on Accelerator Physics October, 2016 13

Schematics and Simplified Equivalent Circuit
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 High pass characteristics with a 
cut-off frequency, fcut

P. Forck, JUAS
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Uim … voltage measured due to image current
R … amplifier input resistor
ω … frequency
βc … beam velocity
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 Signal on each plate is proportional to the beam intensity

 The difference signal (∆U), top - bottom, or left – right, is proportional to the position of the 
beam center of mass

 Normalization to the sum signal (ΣU)
gives the position:

 ࢞ ൌ 	
૚

ሺ࣓,࢞,࢟ሻ࢞ࡿ
·
ࢁ∆

ࢁࢳ

 The difference signal (∆U) is 
normally at least a factor 10 lower 
than the sum signal (ΣU)

 Difficult to do electronically without some of the intensity information leaking through

 When looking for small differences this leakage can dominate the measurement

 Resolution for typical apertures: 
 ≈ tens μm turn-by-turn 

 ≈ μm multi-turn resolution

Beam Position

+
+ +

+
+

+

+

+ +

+

+
+

++

+

+
+ +

+
++ +

+
+

+

+
+

+
+

+
+
+

+ +

+ +
+

+
+

+
++

+
+

+

+

++

+

+
+

+ +

+

+
++

++
+ ++

+
+

+

+
+

+
+

+
+

++

+
+
+

+ d - =
(Sx … position sensitivity)



Eva Barbara HolzerCAS intr. Level course on Accelerator Physics October, 2016 15

-20

-16

-12

-8

-4

0

4

8

12

16

20

-20 -16 -12 -8 -4 0 4 8 12 16 20

X [mm]

Y
 [

m
m

]

-20

-16

-12

-8

-4

0

4

8

12

16

20

-20 -16 -12 -8 -4 0 4 8 12 16 20

X [mm]

Y
 [

m
m

]

-20

-16

-12

-8

-4

0

4

8

12

16

20

-20 -16 -12 -8 -4 0 4 8 12 16 20

X [mm]

Y
 [

m
m

]

Example: Button Pick-up
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R. Jones, CAS
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 ∆U gives linear position reading (no 
geometric correction)

 Condition: Linear cut: projection on the 
measurement plane must be linear:

 Various geometries 
have been built, 
example from GSI 
optimization study
(P.Kowina et al.,
DIPAC 2005)

Shoebox Pick-up
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Beam Current
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 Measurement of the beam’s electrical charges

 Low energies only

 Particles are stopped in the device 
 Destructive

 Sensitive to low currents: down to 1 pA can be 
measured

 Creation of secondary electrons of low energy 
(below 20 eV) 

 Repelling electrode with some 100 V polarization 
voltage pushes secondary electrons back onto 
the electrode

 Absolute accuracy:

 ≈ 1% (some monitors reach 0.1%)

Faraday Cup

Faraday Cup at GSI LINAC, P. Forck, JUAS

CERN GSI
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 Measurement of the magnetic field of the beam

 Non-interceptive

 Independent on beam energy

 Beam as primary winding of a transformer

Beam Current Transformer (BCT)

Magnetic field

ri

ro

w N Turn winding
U = L · dI/dtBeam

U. Raich, CAS
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Current Transformers

Transformer Inductance
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 Magnetic field of the beam is very low 
(Example: 1 μA, r = 10cm ⇒ 2 pT; 
compared to earth magnetic field of 
≈50 μT)

 Aim of the Torus:

 Capture magnetic field lines with cores 
of high relative permeability

 Signal strength nearly independent of 
beam position.

 CoFe based amorphous alloy Vitrovac: 
μr= 105

P. Forck, JUAS
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Adapt Droop Time with Active Transformer
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 Use a trans-impedance amplifier 
(current-to-voltage converter) for 
observation of beam pulses > 10 μs, 
e.g. at pulsed LINAC 

 Droop time constants of up to 1s

 Longer rise times as well (to reduce 
high frequency noise of the amplifier

P. Forck, JUAS

H. Koziol, CAS

Bunch trains:

 Equal areas
 Baseline shift proportional to intensity
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 Image current passing outside of the 
transformer torus

 High permeability material shields the 
transformer against external magnetic 
fields

Transformer Housing

BEAM

Image
Current

Ceramic 
Gap

80nm Ti Coating
20to improve
impedance

1:40 Passive
Transformer

Calibration winding

CERN SPS Fast Beam 
Current Transformer 
(FBCT)

500 MHz Bandwidth; Low droop (< 0.2%/ms)

H. Jakob



Eva Barbara HolzerCAS intr. Level course on Accelerator Physics October, 2016 23

 DC current dB/dt = 0 ⇒ no voltage induced

 Use two identical toroids

 Take advantage of non-linear magnetisation curve

 Modulation of 
opposite sign 
drives toroids into 
saturation

 Sense windings 
measure the modulation 
signal
 Signals from the two 

toroids cancel each 
other as long as 
there is no beam

DCCT: DC Beam Current Transformer

B

I

P. Forck, JUAS
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I=Imod

B

Modulation Current - Core 1
Modulation Current - Core 2

IM

t

Hysteresis loop
of modulator cores

DCCT Principle – Case 1: No Beam

R. Jones, CAS
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I

B

V

t

dB/dt - Core 1 (V1)
dB/dt - Core 2 (V2)
Output voltage = V1 + V2

DCCT Principle – Case 1: No Beam

dt

dB
V 

I=Imod

R. Jones, CAS
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Beam Current IB

V

t

IB

dB/dt - Core 1 (V1)
dB/dt - Core 2 (V2)
Output voltage = V1 + V2

B

DCCT Principle – Case 2: With Beam

Output signal is 
at twice
the modulation 
frequency

I=IB+Imod



Eva Barbara HolzerCAS intr. Level course on Accelerator Physics October, 2016 27

 The length of the pulses is a measure for the beam current

 Zero-flux scheme: compensate for the beam current and measure the magnitude of the 
compensation current

DCCT in the “Zero Flux” Scheme

P. Forck, JUAS
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 Achievable performance Fast Beam Current Transformers (FBCT):
 Absolute accuracy: 1%

 Reproducibility / relative precision: 0.1%

 Dynamic range: 103 (104)

 Performance LHC DC Beam Current Transformers (DCCT):
 Absolute accuracy: 0.2%

 Noise floor 2 µA

 Dynamic range 106 (µA – 1A)

Performance
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Transverse Profile
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 Methods which intercept the beam with matter:
 Secondary emission (SEM) grids

 Screens

 Wire scanners

 more or less perturbing to the beam

 Energies/intensity threshold for safe operation

 Material damage (e.g. wire sublimation, breakage)

 Radiation to other machine components (e.g. quenching of superconducting magnets)

 (Quasi) Non-Invasive Methods: 
 Synchrotron light monitors

 Rest Gas Ionisation monitors

 Luminescence monitors

 Laser wire scanner

 Electron beam scanner

 Gas screen, gas pencil beams

 Beam Gas Vertex Detector – designed for absolute measurement

Overview - Beam Profile measurement

SEM grids and wire 
scanners:
Used as reference 
measurement for 
the other methods
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 When the beam passes through a wire, secondary 
electrons are emitted, proportional to beam intensity

 The current flowing back onto the wires is measured 
using one amplifier/ADC chain for each wire

 Clearing field removes liberated electrons
 Problem: thermal emission
 Very high sensitivity, semi-transparent
 Good absolute measurement
 Spatial resolution limited by wire spacing to 

<≈ 0.25mm
 Dynamic range: ≈ 106

Secondary Emission (SEM) Grids
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 Typically for  setting-up with low intensities, thick screens (mm) 
 emittance blow-up

 Workshop in 2011 at GSI to look at resolution possible with various screen materials: 
http://www-bd.gsi.de/ssabd/home.htm

 Sensitivities of different materials vary by orders of magnitudes

Scintillation Screens

Approximate values for inorganic scintillators

P. Forck, JUAS 
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 Radiation emitted when a charged particle beam goes through the 
interface of two media with different dielectric constants

 Surface phenomenon allows the use of very thin screens (≥ 0.25 μm)
 Much less intercepting, but requires higher intensity

Optical Transition Radiation (OTR) Screens

OTR Screen

Mirror

Intensifier -
CCD

Beam

Lens

Exit window

CERN SPS at injection
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 Combine several screens in one housing e.g.
 Al2O3 scintillation screen for setting-up with low intensity
 Thin (≈10μm) Ti OTR screen for high intensity measurements
 Carbon OTR screen for very high intensity operation

 Cameras:

 CCD cameras are radiation sensitive

 Analogue VIDICON camera can be used with high radiation

Beam Profile Monitoring Using Screens
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 A thin wire (down to 10 µm) is moved across the beam

 Has to move fast to avoid excessive heating of the wire

 Rotational scanner up to 10 m/s with 
special pneumatic mechanism 
(linear scanners slower)

 Detection

 Secondary particle shower detected 
outside the vacuum chamber e.g. 
using a scintillator/photo-multiplier 
assembly

 Secondary emission current detected 
as for SEM grids 

 Correlating wire position with detected 
signal gives the beam profile

 Wire vibrations limit position 
resolution

 Less invasive than screen or SEM grids

Wire Scanners
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 Design specifications:

 Using high resolution angular position sensor

 Dynamic range: 105 - 106

 Usage of sensor with large dynamic (e.g. diamond)

 Automatic selection of gain range by the electronic

 Minimize fork and wire deformations

 Mechanical design (Study of dynamic behavior 
of fork/wire system)

 Vibration mode optimized 
acceleration profile

 Bunch by bunch measurements

 40 MHz digitalization of 25 ns integrated signal

 Measurements synchronous with bunch clock (LHC and SPS)

 20 kGy over 20 years

 Current Wire Scanners at CERN:
 Dynamic range 100; accuracy 5-10%; spatial resolution 50 µm (linear type) and 200 µm (rotational)

New Wire Scanner being developed at CERN

B. Dehning

Wire speed Wire position resolution

20 m/s < 50 µm +- 2.5 µm
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Mechanical Design and Profile Reconstruction

X axis: Optical position sensors (50 +- 2.5 µm)
Y axis: signal from diamond detector

Beam profile measured with pCVD Diamond 
detector and upgraded acquisition electronics

Jose Luis Sirvent Blasco
https://twiki.cern.ch/twiki/bin/view/BWSUpgrade/SecondariesAcquisitionSystem
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Wire Motion Profile

J.Emery. Beam wire scanner control, monitoring and supplies part. Engineering specification. EDMS #1318827

Max torque required here
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 Radiation hard front-end close to wire scanner

 Optical transmission to surface back-end electronics (VME)

 CERN/BI standard components as much as possible (front-end motherboard (GEFE), Gigabit optical link 
with 4.8Gbps, back-end VME card (VFC), timing card (BOBR))

 Wire scanner specific components: 

 Front-end FPGA mezzanine card (FMC) holding radiation hard ASIC for Integration & Digitalization 
(two options investigated, developed at Fermilab for CMS/Atlas and University of Barcelona for LHCb
respectively)
 QIE10  Pseudo Logarithmic (1ch x 1e5 dynamic)

 ICECAL_V3  Linear (4ch x 1e3 dynamic)

Acquisition System Jose Luis Sirvent Blasco
https://twiki.cern.ch/twiki/bin/view/BWSUpgrade/SecondariesAcquisitionSystem
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Beam Loss Measurement
for Protection and Diagnostics
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 See Review of Particle Physics, J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) 
for reference.

 Ionization

 Energy loss by Ionization 
described by the 
Bethe-Bloch formula

 Concept of Minimum 
Ionizing Particle

 dE/dxMIP = 

(1-5) MeV cm2 g-1

 Scintillation

 Light produced by de-excitation of atom / molecule

 Yield is proportional to the energy loss

 Y = dL/dx = R dE/dx

Detection Principles
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 Cherenkov light

Detection Principles cont’d

Drawing: Bock and 
Vasilescu 1999 

Refractive index: n
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 Short ionisation chamber (charge detection)

 Typically gas filled with many metallic electrodes and kV bias

 Speed limited by ion collection time – tens of microseconds

 Dynamic range of up to 108

 PIN photodiode (count detection)

 Detect charged particle

 Insensitive to photons from synchrotron radiation due to 
coincidence counting in two back-to-back mounted PIN 
diodes (K. Wittenburg, DESY)

 Count rate proportional to beam loss

 Speed limited by integration time

 Dynamic range of up to 109

Common types of monitors
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 Scintillator plus photo-multiplier

 Types of scintillators

 Inorganic crystals: NaI, CsI, ....

 Organic (plastic, liquid)

 Light directed (via waveguides) to photomultiplier tube

Common types of monitors cont’d
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 Long ionisation chamber (charge detection)

 Up to several km of gas filled hollow coaxial cables

 Longitudinal position information by arrival time measurement

 e.g. SLAC – 8m position resolution (30ns) over 3.5km cable length

 Dynamic range of up to 104

 Cherenkov fibres

 Time resolution 1 ns

 Minimal space requirement

 Insensitive to gamma background, E and B fields

 Radiation hard (depending on type)

 Combination fiber / readout can adapt to a wide dose range

 Dynamic range 104 seems feasible

Common types of monitors cont’d
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 Main purpose: prevent 
damage and quench

 3600 Ionization chambers

 Beam abort thresholds:
 12 integration intervals: 

40μs to 84s (32 energy levels)

 1.5 Million threshold values

 Each monitor aborts beam
 One of 12 integration intervals over threshold

 Internal test failed

 Requirements and Challenges
 High Dependability (Reliability, Availability, Safety)
 Threshold precision (factor 2)

 Reaction time 1-2 turns (100 – 200 μs)

 Dynamic range: 108 (at 40µs 105 achieved – 106 planned)

 Radiation hard: currently at CERN development of kGy radiation hard readout to avoid 
noise from long cables

LHC BLM System
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Beam Abort Threshold Determination

 Relate the BLM signal to the:

 Number of locally lost beam particles

 Deposited energy in the machine

 Quench and damage levels

 Extensive simulations and experiments during 
system design and beam tests in the LHC
 Proton loss locations (tracking codes:

MAD-X, SIXTRACK)

 Hadronic showers through magnets (GEANT, 
FLUKA)

 Magnet quench levels as function of beam 
energy and loss duration

 Chamber response to the mixed radiation field
(GEANT, FLUKA, GARFIELD)
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 Fast and sensitive

 Small and radiation hard

 Used in LHC to distinguish bunch by bunch 
losses

 Dynamic range of monitor: 109

 Temporal resolution: few ns

 Test system installed in cryo magnet at LHC

Diamond Detectors
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Thank you for your Attention
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Glossary:

 GEFE : GBT Expandable Front-End

 CERN/BI general purpose FPGA-based radiation tolerant front-end motherboard with 
optical signal transmission

 Target Total Ionizing Dose (TID): up to 75 krad
 Igloo2 UMd Board

 Another option for the front-end motherboard, equipped with a flash-based FPGA Igloo2, radiation 
tolerant components and a versatile link transceiver (VTRx) to drive the optical link with the GBT 
protocol.

 VFC board: VME FMC Carrier Board

 CERN/BI general purpose FPGA-based back-end VME board
 FMC: FPGA Mezzanine Card

 https://en.wikipedia.org/wiki/FPGA_Mezzanine_Card

 Here: application specific Mezzanine card for the VFC board
 GBT: Gigabit Transceiver Link (4.8Gbps)

 QIE: Charge Integrator & Encoder

50
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Overview of the most commonly 
used diagnostics devices for
for the different beam parameters.

From: Peter Forck: Lecture on Beam 
Instrumentation and Diagnostics at the 
Joint University Accelerator School 
(JUAS)
http://www-bd.gsi.de/conf/juas/juas.html


