
Position-Sensitive Gaseous Photomultipliers: Research and Applications

We would like to present our new work - a book

Premier Reference Source

Position-Sensitive Gaseous Photomultipliers: Research and Applications

By Tom Francke (Myon, Sweden) and Vladimir Peskov (CERN)

Publisher-IGI Global, USA Release Date: May, 2016, 15 Chapters, 562 pages

Its main focus is on new designs, technological aspects and physics of operation of positon- sensitive photomultipliers, so it fits well this working group

Let me first present my co-author Tom Francke

We met at CERN in 1986, where he worked on photosensitive substances and later on various RICH designs. Then we continue to collaborate in Sweden, where he lead the XCouter company, developing micropattern detectors for medical application

General notes:

The book summarizes the experience of many groups in developments of photocathodes and position sensitive multipliers

Why are these detectors unique, why they deserved to be described in a dedicated book?

The main advantage is-a <u>large sensitive area</u>, since there are no constrains on the window size.

(Vacuum detectors max. diameter is 20 inch for PM and for MCP 8x8 inch2)

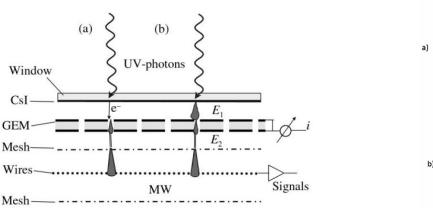
They are also position -sensitive

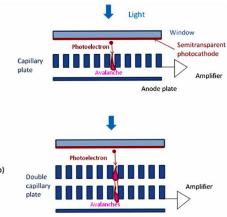
(let me remind you that gaseous detectors were the first electronic position-sensitive detectors

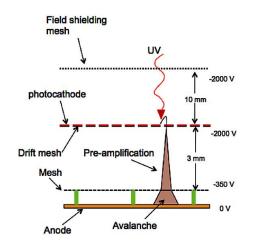
(PMT were not position-sensitive and MCP and multianode PMTs appeared latter)

Vacuum PMT

Vacuum MCP




ALICE RICHeach module 40x60cm2



The problems, however are: feedback, cathode degradation by ion bombardment, etc.

This is why micropattern structures are so important in gaseous PMTs: due to their geometry they are capable to supress photon and ion feedbacks

Book structure

Preface	X
Acknowledgment	XX
Introduction	21
Chapter 1	
Conversion of UV and Visible Photons to Photoelectrons	1
1. PHOTOIONIZATION OF GASES	1
2. LIQUID PHOTOCATHODES	2
3. SOLID PHOTOCATHODES	4
CONCLUSIVE REMARKS	7
Chapter 2	
Electron Multiplication and Electron Multipliers	9
1. ELECTRON AVALANCHE MULTIPLICATION IN GASES	9
2. SECONDARY PROCESSES DURING AVALANCHE DEVELOPMENTS	11
3. THE MAIN DESIGNS OF AVALANCHE GASEOUS DETECTORS AND THE PRINCIPLE OF THEIR	2
OPERATION	15
CONCLUSION AND REMARKS	
Chapter 3	
Position-Sensitive Gaseous Photomultipliers Filled with Photosensitive Vapours	49
1. INTRODUCTION	49
2. SEARCH FOR VAPOURS WITH LOW IONIZATION POTENTIAL	51
3. EXPERIENCES LEARNED WHEN OPERATING GASEOUS DETECTORS FILLED WITH	
PHOTOSENSITIVE VAPOURS	63
4. THE SINGLE PHOTOELECTRON PULSE HEIGHT SPECTRUM	71
5. AGING OF PHOTOSENSITIVE GASEOUS DETECTORS	75
6. CATHODE EXCITATION	80
7. LEAKAGE CURRENT IN DETECTORS FILLED WITH TMAE VAPOURS	82
8. CONCLUSIVE REMARKS	04

Chapter 4

Liquid Photocathodes	
1. INTRODUCTION: EARLY OBSERVATIONS	
2. SYSTEMATIC STUDIES OF TMAE BASED PHOTOCATHODES	
3. OTHER LIQUID PHOTOCATHODES	108
4. CONCLUSIVE REMARKS	115

Chapter 5

Early Work on UV Sensitive Solid Photocathodes for Gaseous Detectors	119
1. INTRODUCTION	119
2. A MWPC COMBINED WITH A CUI PHOTOCATHODE	121
3. OTHER SOLID PHOTOCATHODES	124
4. CONCLUSIVE REMARKS	130

Chapter 6

CsI and Cs ₂ Te Photocathode	es	
1. INTRODUCTION		137
2. CsI PHOTOCATHODES	S	140
3. A Cs2Te PHOTOCATHO	ODE	200
4. CONCLUSIVE REMAR	RKS	

Chapter 7

Construct Data stars Sourcitize to Visible Lisht	220
Gaseous Detectors Sensitive to Visible Light	
1. INTRODUCTION	
2. EARLY WORK ON GASEOUS DETECTORS SENSITIVE TO VISIBLE LIGHT	
3. MASTERING PHOTOCATHODE MANUFACTURING	
4. SYSTEMATIC STUDIES OF PHOTOCATHODE PROTECTION	
5. HOLE TYPE GASEOUS PHOTOMULTIPLIERS	
6. CONCLUSIVE REMARKS	

Chapter 8

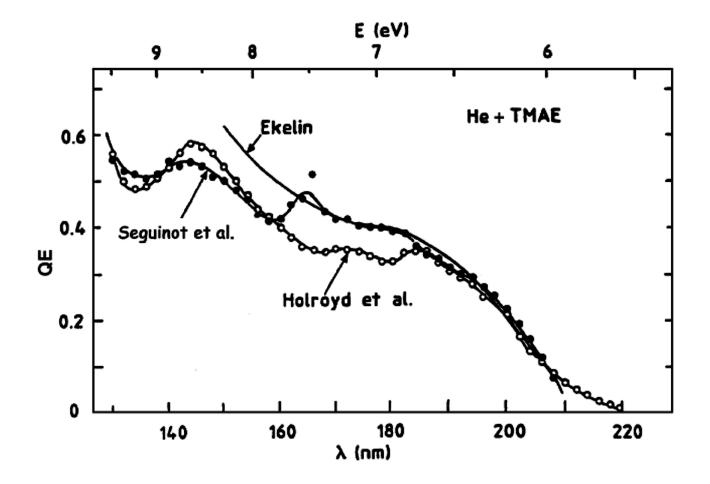
Alternative Position Sensitive Photomultipliers	273
1. INTRODUCTION	
2. MULTI-ANODE PMTs	277
3. MCP-BASED POSITION SENSITIVE PMTs	282
4. HYBRID VACUUM PHOTODETECTORS	292
5. THE MAIN APPLICATIONS OF POSITION SENSITIVE VACUUM PMTs	298
6. SOLID-STATE DETECTORS	300
7. APPLICATION OF SOLID-STATE DETECTORS	306
8. CONCLUSIVE REMARKS	309

Chapter 9

-	
Cherenkov Light	
2. CHERENKOV LIGHT	
3. GENERAL THEORY	
4. CONCLUSION AND REMARKS	

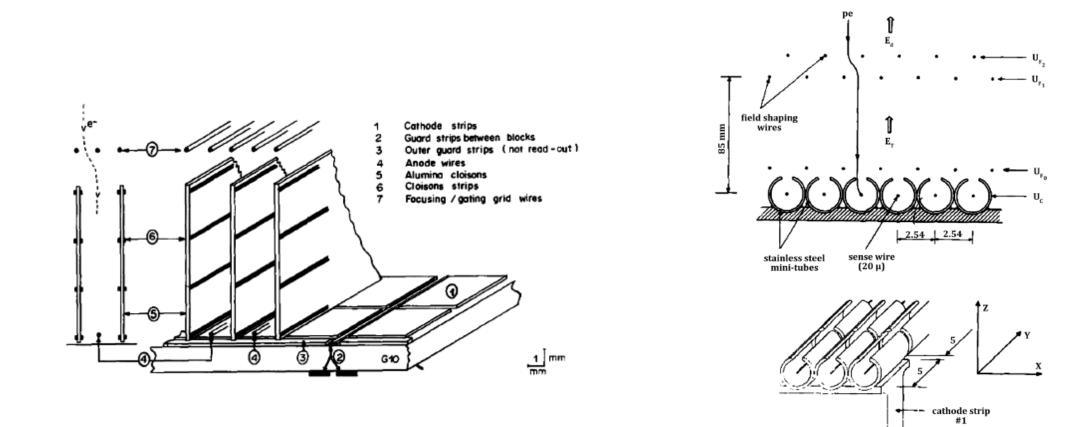
Chapter 10	
The History of Cherenkov Detectors	
1. CHERENKOV DETECTORS	
2. THE PIONEERS	
3. THE BIRTH OF RICH COUNTERS	
4. MODERN RICH COUNTERS	
5. CONCLUSION AND REMARKS	

Chapter 11

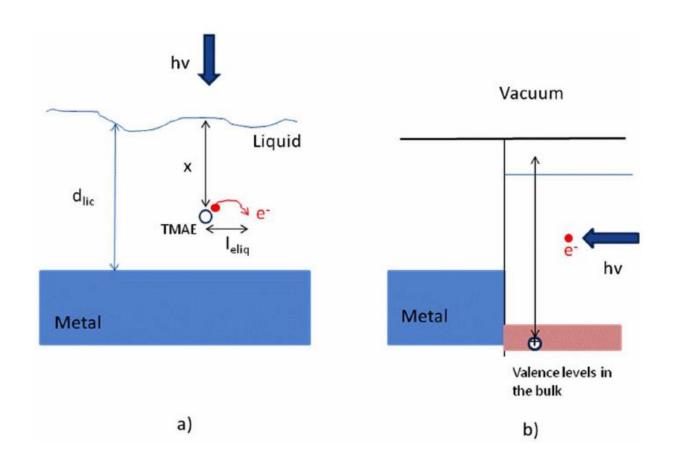

A NaF RICH Counter	346
1. THE HISTORY OF THE NaF RICH PROJECT: THE CPLEAR SPECTROMETER	
2. THE CONVENTIONAL CHERENKOV COUNTER	
3. THE NaF RICH COUNTER	
4. THE ATMOSPHERIC PRESSURE NaF RICH DETECTOR USING A QUARTZ WINDOW AND PAD	
READOUT	359
5. SEPARATION POWER	
6. CONCLUSION	

Performance of the CAPRICE94 RICH Detector during the 1994 Balloon Flight 1. INTRODUCTION	
2. THE CAPRICE94 RICH DETECTOR	
3. EXPERIMENTAL RESULTS	
4. CONCLUSION	
Chapter 13	
Performance of the CAPRICE98 Balloon Borne Gas-RICH Detector	393
1. INTRODUCTION	
2. THE GAS-RICH DETECTOR	394
3. RESULTS FROM FLIGHT DATA	401
4. CONCLUSION	412
Chapter 14	
CsI-RICH Detectors	
1. INTRODUCTION	417
2. CsI-MWPC RICH DETECTORS	418
3. CsI-GEM RICH DETECTORS	426
4. CsI-TGEM/RETGEM RICH DETECTORS	430
5. THE COMPASS RICH UPGRADE	437
6. CONCLUSIVE REMARKS	438
Chapter 15	
Other Applications of Photo-Sensitive Detectors	
1. INTRODUCTION	443
2. PLASMA DIAGNOSTICS	443
3. SPECTROSCOPY	448
4. ASTROPHYSICS	453
5. DETECTION OF SPARKS AND FLAMES	454
6. PHOTOSENSITIVE GASEOUS DETECTORS FOR THE READOUT OF SCINTILLATORS	472
7. CONCLUSIVE REMARKS	487

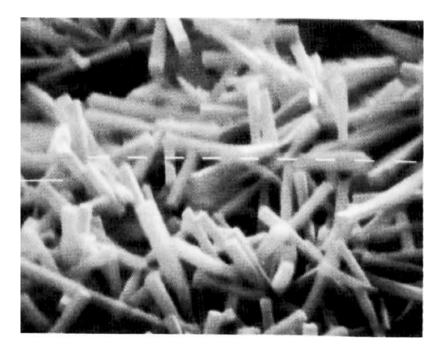
Conclusion	
Appendix	
Glossary	
Compilation of References	526

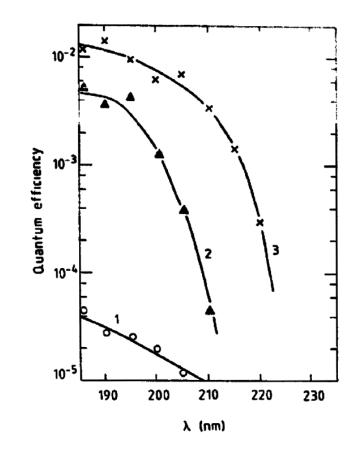

Let me highlight some achievements, designs, developments and associated problems

1.TMAE photocathode- was a breakthrough in 1980th

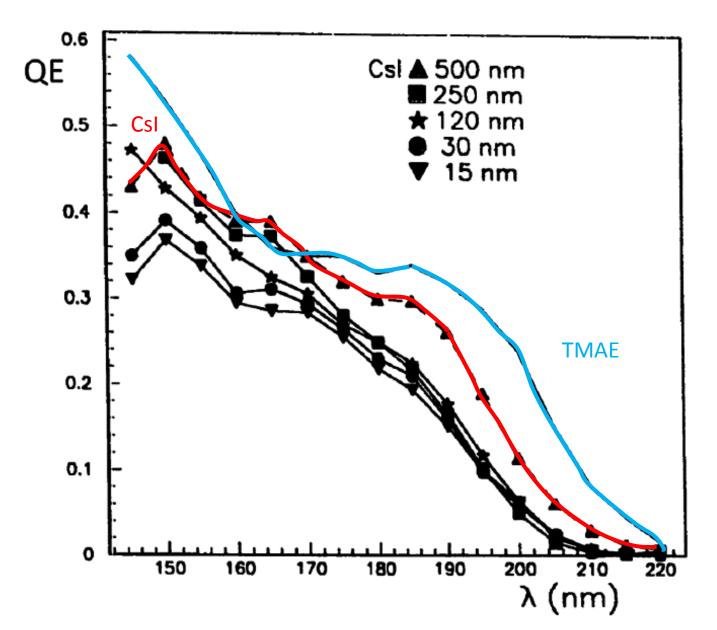


Highest QE, however chemical aggressive. It requires also careful cleaning. In books can be find the recipes and solutions

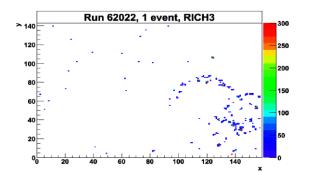

Feedback and its suppression



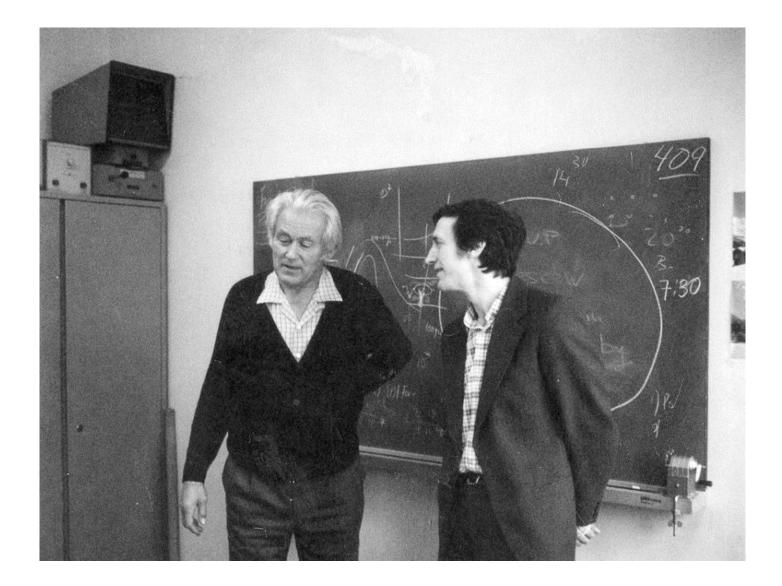
2. Liquid photocathode- a nice physical effect



3. Search for air-stable solid photocathodes

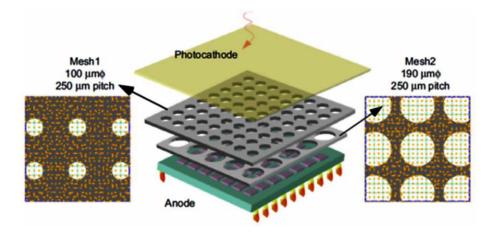


4. Csl photocathode

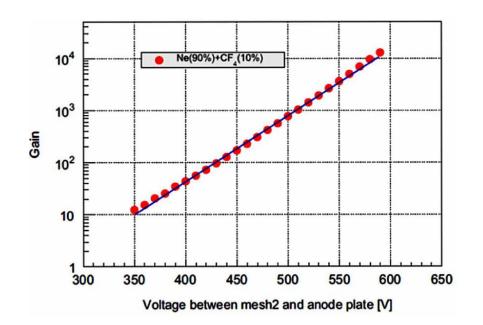

CsI has quantum efficiency comparable to TMAE, but is not chemically aggressive, tolerates a shot contact with air and thus it is much easier to handle. This is why it fully replace TMAE in most of detectors It has also potential foe better time resolution since there is practically no jitter in creation photoelectrons Feedback problem also exists, hut the electronics was improved with time, so the operation at lower gains becomes possible

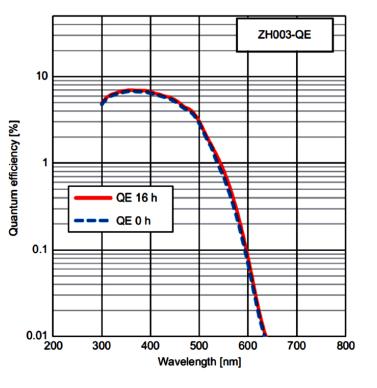
In CsI -RICH detector small feedback was even useful

One of the remaining problems –is discharges induced at high rate environment (COMPASS)

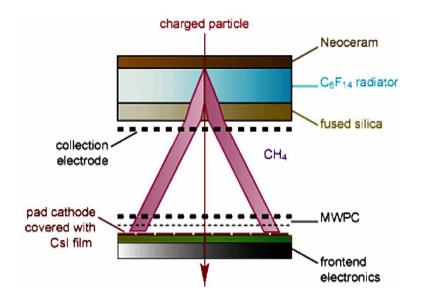

5. The future: gaseous detectors sensitive to visible light?

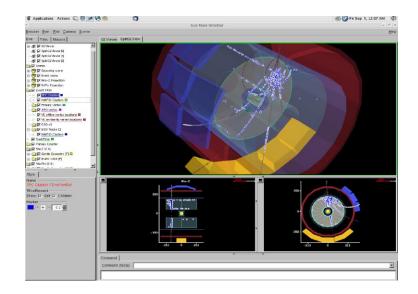
Famous Charpak joke:


"The next Noble prize in the field of gaseous detectors will be given the persons who develop position-sensitive gaseous detectors sensitive to visible light"

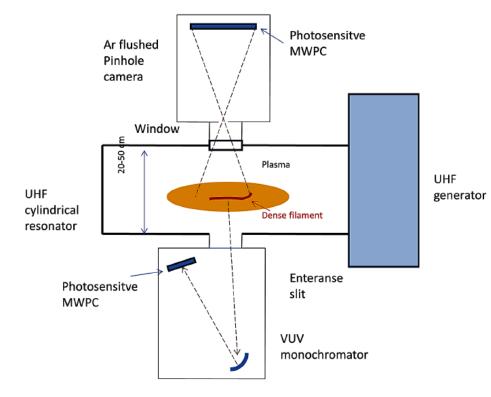


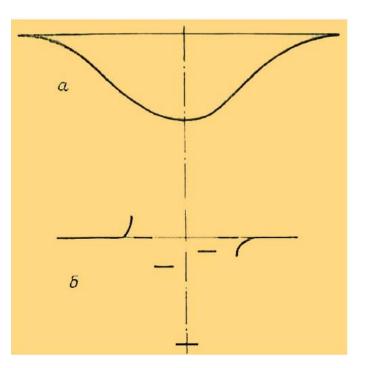
The progress


First Hamamatsu gaseous detectors sensitive to visible light had gains ~ 10 now is ~10000



Applications


The main application is, of course, RICH



Experiment-Lab	3σ π/K Separation Momentum Range (GeV/c)	Max Interaction Rate (Hz)	Radiator (Length)	CsI Active Area (m²)
ALICE-CERN/LHC	0.8-3	104	C_6F_{14} (15 mm)	11
STAR-BNL/RICH	0.8-3	104	$C_6 F_{14} (10 \text{ mm})$	1.2
COMPASS-CERN/SPS	3-40	106	$C_4 F_{10} (3 m)$	5.5
HALL A-TJNAF	0.8-3	106	$C_6 F_{14} (15 \text{ mm})$	0.7
HADES-GSI	hadron blind	106	$C_4 F_{10} (0.4 \text{ m})$	1.4

From Nappi, 2005.

Grid

Conclusions

We tried to give in this book an exhaustive compilation of knowledge on photosensitive gaseous detectors: their technology, main design and physics of operation.

We think that one of its important feature is that it contains unpublished or difficult reachable information on handling some products, like cleaning of TMAE, preparation of some photocathodes etc.

The latest, probably has a special value because people participating in these exciting developments and possessing the unique "know- how" are gradually stepping down from the scientific activity and their experience can be lost

We hope the book will be useful for researches, technicians, engineers, university professors and especially for students