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Outline

This talk is a continuation of the results presented by Piotr during the last RD51 mini week
Reminder:
» GEM biasing in the future ALICE TPC

» Set-up of the discharge propagation measurements

» First study: Influence of the powering scheme on the occurrence of discharges

New Measurements:
» Different gas mixtures

Further studies with the standard powering scheme:
» GEM bottom at GND potential
» Different induction gap length and different drift length
» Studies with a large pitch foil
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Former biasing scheme of GEMs (ALICE)

» Sectorised sides: Powered with
loading resistors

o Ui Uaeo Uz Useo Usso Uy Ul » GEM2 to GEM4: Sectorised side
faces the drift cathode (To avoid
spark propagation)

» GEMI: Non subdivided side faces
the drift cathode

— Minimise distortions in case of a
short
— Cover electrode functionality

Rit
Ris
Ror
Rog
Rar
Ras
Rt
Rap

Readout

» GEM1 setting was changed due to
the outcome of this discharge
studies

Question: How do the different GEM settings (GEM1 vs GEM2 to GEM4) compare in

terms of discharge propagation?
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Set-ups in Munich and CERN - 1/2

The studies presented here were done in Munich and at CERN, with almost similar settings:

Munich CERN
a-Sources Pu, Am, CM (570 Hz) mounted in the cathode PCB
Rn (15Hz) in the detector volume Rn (14 Hz)
Gas: Ar-CO, (90-10) (70-30) Ar-CO, (90-10)
Ne-CO, (90-10) Ne-CO»-N, (90-10-5)
Hy-O / Oy 0.02 ppmV/10 ppm 160 ppmV/?
(@10Lh™1)
daritt 29.5mm, 39.5mm 26.7mm, 13.9mm

In both cases standard GEMs with a distance of 2mm to a readout plane were studied. (At
CERN additional studies for different drift lengths, induction gap and a large pitch foil have

been made.)
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Set-ups in Munich and CERN - 2/2
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» Signal from the readout plane

— First: A bipolar primary discharge
— Second: An unipolar secondary discharge

Gate signal

» Signals are counted by NIM logic with
corresponding discriminators (Thresholds are
tuned based on the scope signals)

» To avoid counting the secondary discharge as a
primary one, a gate is used

» Discharge signals are recorded for further analysis
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Standard vs Flipped
HV - “standard” HV - “flipped”
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Flipped- vs Standard-configuration

Ar-CO, (90-10), R, = 10 MQ, INDEP. HV, Rgyp.1s = 5110 MQ

> 1 CfFA a a (o) , fae0ee o
I < ©403V (TOP)
8 N 0403V (BOT) g
© 06 - P A407V (TOP) | 2
o A o A407V (BOT) | §
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3000 3500 4000 4500 5000 5500 6000 6500 7000

Enp (V/icm)

Top: Standard-config.
Bot: Flipped-config.

» Drift distance:
29.5mm
» AVagrwMm range may be

to small to see an
effect

» Standard-configuration: Onset of secondary discharges @ ~ 5.5kV cm~!

» Flipped-configuration: Onset of secondary discharges @ ~ 4kV cm™!

» No dependence on AVggy visible
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Further studies: Different resistors

£ 1 [ swrv.iomor).oNDsi0  AMA Ad 4
'-E o8 £A407 V, 10M (BOT), GND 5/10 A ;
2 . I .
e SHRVIMTORGORI0 o A Top: Standard-config.
2 06 [ 4407v.m (0P, GND 2133
-% 4407V, 10M (TOP), GND 2/3.3 : Bot: Fllpp6d—C0ang.
© 0.4 [ a407v,10M (BOT). GND 2/3.3 4
®© A M M .
oo : » Drift distance: 29.5 mm
2 " b A407v, 5M (BOT), GND 5/10
il - 2 » Rp/Ranp-B/Ranp-T
3000 3500 4000 4500 5000 5500 6000

Ewo (V/cm)
» Same onset fields observed as in the previous measurements
» No significant change with different resistors was found — Resistors only influence the
loading behaviour of the GEM, but not the energy stored in the GEM and hence not
the discharge probability
» Adding capacitances (to simulate long cables) doesn't change the picture
» Powering the GEM with a resistor chain yields an higher onset field in case of the

Standard configuration
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Last reminder: Propagation time
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» Dependence on the induction field well visible

Discharge studies with single GEMs (P. Gasik, A. Deisting)

- standard deviation of a mean value
- readout error (scale) not included



Discharges in different gas mixtures

Still: Standard- vs Flipped-configuration
Measurements shown so far: Ar-CO, (90-10)
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Ar-CO, (70-30)

d = 39.5 mm, Indep. HV, R, = 10 MQ, Rgxp 1op = 5 MQ , Rgnpsor = 10 MQ,

21| o n
=
] = B Ar-CO2 (90-10), 407 V (TOP)
808 [ ©  OArCO2(90-10), 407 V (TOP) Top: Standard-config.
£ m  *ArCO2(7030), 502 V (TOP) . _
206 | ©Ar-CO2 (70-30), 502 V (BOT) Bot: Flipped-config.
(=)
]
S04 | . » 100V more across the
* o o$ ¢ GEM
02
m) < » Less steep curves
0 EMWW

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Enp (Vicm)

> Later onset of the secondary discharges (Standard-config: ~ 7kV cm~!, flipped-config:
~53kVecm™1)
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Ne-CO, (90-10)

d =39.5 mm, Ne-CO, (90-10), Indep. HV, R, = 10 MQ, Rgyp.10p = 5 MQ , Rsypr = 10 MQ

2
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Top: Standard-config.

Bot: Flipped-config.

> Earlier onset of the secondary discharges (Standard-config: ~ 3.4kV.cm™1,

flipped-config: ~ 2kVcm™1)

» Far less steep curves
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Ne-CO»-Nj (90-10-5)

Independent HV, R_ = 10 MQ, Rgnp-tor = 5 MQ , Renpsor = 10 MQ
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Top: Standard-config.
Bot: Flipped-config.

> Earlier onset of the secondary discharges (Standard-config: ~ 3.8kV cm™1,

flipped-config: ~ 2.4kVcm™1)
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Summary so far: —1/2

Ar-CO, (90-10) Ne-CO,-N, (90-10-5) Ne-CO, (90-10) Ar-CO, (70-30)

Propagation onset
Signal (1s/2nd) 0.3128V 0.411.2V 0.75/0.6 V m

Footnote:

> Discharge probabilities in Ar-CO» (90-10) at 38.5 mm drift length differs not from the shorter

value _ .
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Summary so far: —2/2

» Lower onset of secondary discharges for the — First Townsend coefficient —
'flipped’ setting ~60 , : .
. L £ —=—Ne-CO, (90-10)
» The onset filed strength follows qualitatively the el T hecom, 0109 |
first Townsend coefficient — but starts at far lower ° © ’
values

» No simple dependence of the onset on A Vg,

the resistors and the capacitance found 20 1
» Different behaviour of the onset while the GEM o} 1

was powered with a resistor chain, suggests a . .

dependence on the HV supply 0 4 8 " viom)
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Further studies with the standard configuration

1. Question: Does the potential change of the bottom GEM side during the primary
discharge trigger the secondary discharge?

Discharge studies with single GEMs (P. Gasik, A. Deisting)
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Standard HV supply vs Varvg = GND — Settings:

Standard

A
=
“n

» See picture cl g
3|
» Discharges go after attenuation with a + g
) PR 10x10 GEM = ;>u
12dB attenuator and a 10kS2 resistor (or )
. .. X
10 MQ) to the discriminator/scope . <
‘ eadout
Vaems = GND
» Lower side of the GEM grounded 12dB

» Readout plane on HV

» Decoupling of the signal via a 4.4nF
capacitor, further readout as the
standard readout

to discriminator

to HV

The following: Measurements with a standard GEM in Ar-CO, (90-10) with an induction
gap of 2mm and a drift distance of 26.7 mm.
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Secondary discharge probability

Secondary Prob.
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» The standard HV
settings and the
VGEMB = GND show
the same steep onset
as seen before

» There is no difference
visible between the
two settings

» The onset is at a

higher voltage as
compared to previous
results
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Time between discharges

Time to the Secondary Discharge vs Elnd/p

t [ps]

10

it i

H

e Standard

+ Vgemg=GND

5.6

5.8 6 6.2 6.4

66 6.8 72 74 16
Emd/p [V/icm mb]
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The time between
discharges for both
settings shows the
same trend

The trend is as
expected from
previous
measurements

Comparing standard-
and GND-HV settings:
No differences visible

However differences
between standard
GEMs visible as
compared to Munich



Further studies with the standard configuration

2. Question: How does the length of the induction gap influence the discharge behaviour?

Discharge studies with single GEMs (P. Gasik, A. Deisting) 20



Secondary discharge probability

Secondary Discharge Prob. vs EIn d/p
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72 74 76
Elnd/p [V/cm mb]

ding = 2mm: All
previous points are
shown

ding = 3mm: Only
the Vgrms = GND
setting was measured

The onset of the
secondary discharges
moves to higher fields

This change is smaller
as the difference in the
CERN and Munich
results for

dInd =2mm
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Time between discharges

Time to the Secondary Discharge vs Emd/p
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Emd/p [V/cm mb]

» The measured points
for dipg = 3 mm move
as expected from the
secondary discharge
probability

In addition:

» Amplitude of the
secondary discharge
doubles with the
increased gap

» Trend of this
amplitude with Epg
not yet conclusive
(CERN/Munich
measurements) 2



Further studies with the standard configuration

3. Question: Does a large pitch (LP) foil behave similar?
4. Question: Is there an influence of the drift gap?

Discharge studies with single GEMs (P. Gasik, A. Deisting)
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Secondary discharge probability

Secondary Discharge Prob. vs Emd/p » As comparison:
P B m L [ Standard (S) GEM at
© 100 + A | dina = 3mm and
D; C %% l | ‘P ‘ ‘ standard HV config.
_cg 80~ » LP GEM: Onset of the
S - discharges occurs at
8 6ol ] . . o
8 - I higher induction fields
a0 + i » No difference for
B different drift lengths
B S,d_ . =26.7mm .
20 + prif and HV settings
L v A LP, Standard, d . =13.9mm ]
, C . LP,V__ .=GND, d__=139mm > leFergnce SvsLP
- ‘A | v LP, Stndard, d =267mm GEM is smaller as the
6 6.5 7 75 8 85 9 difference between
E,.4/P [V/cm mb] CERN and Munich S
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Time between discharges

t [ps]

10

Time to the Secondary Discharge vs Elnd/p
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» Also here: The points

for different LP
measurements don't
show different
behaviour

The overall change for
the time between
discharges, behaves as
it did for previous
measurements: As the
onset shifts to higher
fields, the time
distribution does as
well.
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Summary of the CERN studies

GEM type S S LP LP
Primary discharge probability (O) 1073 1073 1072 1072
dmd [mm] 2 3 3 3
dprife [mm] 27.7 26.7 26.7 13.9
VGEMB HV(GND) | GND HV HV(GND)
Onset Epyg [Vcm™!mbar™] 5.7(5.7) 6.2 6.6 6.6(6.6)
Signal (15t/15°9) [V] - HV-config: || -0.18/-1.5 -0.18/-4.7 | 7%/47
GND-config: || -0.18/-3.4 | -0.3/-1.1% -0.18/4.7

Footnotes:

1: Corresponding measurements made with different attenuation

2: Non constant behaviour of the primary voltage

Discharge studies with single GEMs (P. Gasik, A. Deisting)
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Combined Conclusions

» The onset of the secondary discharges depends on the induction field — so far no other
dependency has been found

» This includes studies of the absolute potential on the GEM, drift-field
(200-600 V cm~1) and -length studies, and studies of the AVgry (410V + O(%))

» The exact position of this onset seems to change from foil to foil

» The field for the onset depends on the induction gap (Threshold value increases with
the gap)

» The time between primary and secondary discharge depends exponentially
(~ exp(—c1 X (Emg — ¢2))) on the induction field, where ¢, depends on the onset field

» Different gas mixtures lead to a different slope of the onset

Discharge studies with single GEMs (P. Gasik, A. Deisting) 27



Backup

Discharge studies with single GEMs (P. Gasik, A. Deisting)
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Simulating long cables: Capacitances to ground

1r O omm A ® A
> [
= A -
L2 08
E A
P s . 2
£ 06 |
c i m
'.% 0.4 r
o @
o
Q 02
S | &
0 —opn———o a8
3000 4000 5000 6000
» To simulate long cables capacitors were added
>

flipped config.
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7000

4407 V, 10M (TOP), GND 5/10, C=0
A407 V, 10M (BOT), GND 5/10, C=0
® 407V, 10M (TOP), GND 5/10, C=9 n
0407V, 10M (BOT), GND 5/10, C=9 n
H407 V, 10M (TOP), R-CHAIN, C=% nF
0407 V. 10M (BOT). R-CHAIN, C=9 nF

No changes observed with the standard config., but lower onset seen in case of the
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Observation while powering the GEM with a resistor chain

1t OAAA A A - #
m] A
08 | &
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A

propagation probability
o
»

04 | @ i "
02 | -

: A

0 E\ -------- PO S
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

o (V/em)

» In case of the flipped configuration nothing changed
» For the standard configuration the onset shifts to higher fields!
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4407 V, 10M [TOP), GND 5/1
4407 V, 10M (BOT), GND 5/1
407 V, 10M (TOP), R-CHAIN
0407 V, 10M (BOT), R-CHAIN
=415V, 10M (TOP), R-CHAIN
0415V, 10M (BOT), R-CHAIN
®415V, 1M (TOP), R-CHAIN

D415V, 1M (BOT), R-CHAIN

® 415V, 100M [TOP), R-CHAI
0415V, 100M [BOT), R-CHAI
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Determination of the plotted parameters

Probabilities:

» Primary ("lower case 1"):

2
scaler cotints Arate 1
Pr = M) Ay — Pry +
rate X time rate (scaler counts),

» Secondary ("lower case 2"):

I t 1 1
Pry — (scaler coun 5)27 APry — Pry n
(scaler counts)y (scaler counts);  (scaler counts),

Times:

» Average time between discharges := Mean of the "Time between discharges
distribution" (Example on the next slide)

» Error given in plots showing the time is the standard deviation of the "Time between

discharges distribution"
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Example: "Time between discharges distribution"

secondaryTime

secondaryTime

50— Entries 89

B Mean 2.9126-05

o Std Dev 9.294e—06
40—
30—
20—
10—

ol t v v =T e ke

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
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Settings:
AVeey = 406V
Epyite = 400V cm ™1
Eing = 5943V em™?

FYI:

Time lower than 0.2 ps

AVeey = 419V

Epyite = 400V cm™!
Eing = 6990V cm™!

have been observed.
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Amplitude of the secondary discharge — 1/2

U, [V]

Amplitude of the secondary dc vs Emd/p

Ok
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_ ce b b b b b b |
46 58 6 62 64 66 68 7 72
E, /P [V/Icm mb

Discharge studies with single GEMs (P. Gasik, A. Deisting)

‘7.4‘ ‘ ‘7.6
]

Points recorded during the
VaemB = GND measurements
are shown

Furthermore: Points with a
different attenuation were
rejected

The amplitude of the secondary

discharge roughly doubles with
the increased induction gap

. Different trend with induction

field observed in Munich
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Amplitude of the secondary discharge — 2/2

Signal amplitude
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- standard deviation of a mean value

- readout error (scope scale) included

Results in Munich:

» Except of the onset

field, the amplitudes
in the flipped/non
flipped configuration
behave similar

Amplitudes increase
with the induction

field

Differences between

measurements
(CERN/Munich) still
to be resolved
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Secondary discharge probability for different GEM voltages

Secondary Prob.

Secondary Discharge Prob. vs Em dlp
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» As observed in Munich: No
dependence of the discharge
probability (time between
discharges) of the GEM voltage
observed
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Secondary discharge probability for different drift fields

Secondary Prob.

Secondary Discharge Prob. vs EIn dIp

&

Epin/P < 0.25 [V/mb]
0.25 < Ep/p < 0.30 [V/mb]

0.35<E,/p < 0.40 [V/mb]

Drift

0.40 < Ep/p < 0.45 [V/mb]

0.45 < Ey/p < 0.50 [V/mb]

0.55 < Ey/p < 0.60 [V/mb]

» Studied with the standard GEM
and and the 2 mm gap

» No dependence observed

» The same is true for e.g. the
time between discharges

pl il
N

85 9
E, /P [Vicm mb]
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Primary discharge probability of all measurements
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» Clearly a higher primary
discharge probability with the
LP

» A high amount of outliers —
not explained yet

» Qutliers only visible in this plot
— no influence on other
measurements found
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Discharge studies with single GEMs (P. Gasik, A. Deisting)
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