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Outline

This talk is a continuation of the results presented by Piotr during the last RD51 mini week

Reminder:
I GEM biasing in the future ALICE TPC
I Set-up of the discharge propagation measurements
I First study: Influence of the powering scheme on the occurrence of discharges

New Measurements:
I Different gas mixtures

Further studies with the standard powering scheme:
I GEM bottom at GND potential
I Different induction gap length and different drift length
I Studies with a large pitch foil
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Former biasing scheme of GEMs (ALICE)

I Sectorised sides: Powered with
loading resistors

I GEM2 to GEM4: Sectorised side
faces the drift cathode (To avoid
spark propagation)

I GEM1: Non subdivided side faces
the drift cathode
→ Minimise distortions in case of a

short
→ Cover electrode functionality

I GEM1 setting was changed due to
the outcome of this discharge
studies

Question: How do the different GEM settings (GEM1 vs GEM2 to GEM4) compare in
terms of discharge propagation?
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Set-ups in Munich and CERN – 1/2

The studies presented here were done in Munich and at CERN, with almost similar settings:

Munich CERN

α-Sources Pu, Am, CM (570Hz) mounted in the cathode PCB
Rn (15Hz) in the detector volume Rn (14Hz)

Gas: Ar-CO2 (90-10) (70-30) Ar-CO2 (90-10)
Ne-CO2 (90-10) Ne-CO2-N2 (90-10-5)

H2-O / O2 0.02 ppmV/10 ppm 160 ppmV/?
(@ 10 L h−1)

ddrift 29.5mm, 39.5mm 26.7mm, 13.9mm

In both cases standard GEMs with a distance of 2mm to a readout plane were studied. (At
CERN additional studies for different drift lengths, induction gap and a large pitch foil have
been made.)
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Set-ups in Munich and CERN – 2/2

I Signal from the readout plane
→ First: A bipolar primary discharge
→ Second: An unipolar secondary discharge

I Gate signal

I Signals are counted by NIM logic with
corresponding discriminators (Thresholds are
tuned based on the scope signals)

I To avoid counting the secondary discharge as a
primary one, a gate is used

I Discharge signals are recorded for further analysis
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Standard vs Flipped
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Flipped- vs Standard-configuration

Top: Standard-config.
Bot: Flipped-config.

I Drift distance:
29.5mm

I ∆VGEM range may be
to small to see an
effect

I Standard-configuration: Onset of secondary discharges @ ∼ 5.5 kV cm−1

I Flipped-configuration: Onset of secondary discharges @ ∼ 4 kV cm−1

I No dependence on ∆VGEM visible
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Further studies: Different resistors

Top: Standard-config.
Bot: Flipped-config.

I Drift distance: 29.5mm
I RL/RGND-B/RGND-T

I Same onset fields observed as in the previous measurements
I No significant change with different resistors was found → Resistors only influence the

loading behaviour of the GEM, but not the energy stored in the GEM and hence not
the discharge probability

I Adding capacitances (to simulate long cables) doesn’t change the picture
I Powering the GEM with a resistor chain yields an higher onset field in case of the

Standard configuration
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Last reminder: Propagation time

I Dependence on the induction field well visible
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Discharges in different gas mixtures

Still: Standard- vs Flipped-configuration
Measurements shown so far: Ar-CO2 (90-10)
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Ar-CO2 (70-30)

Top: Standard-config.
Bot: Flipped-config.

I 100V more across the
GEM

I Less steep curves

I Later onset of the secondary discharges (Standard-config: ∼ 7 kV cm−1, flipped-config:
∼ 5.3 kV cm−1)
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Ne-CO2 (90-10)

Top: Standard-config.
Bot: Flipped-config.

I Earlier onset of the secondary discharges (Standard-config: ∼ 3.4 kV cm−1,
flipped-config: ∼ 2 kV cm−1)

I Far less steep curves
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Ne-CO2-N2 (90-10-5)

Top: Standard-config.
Bot: Flipped-config.

I Earlier onset of the secondary discharges (Standard-config: ∼ 3.8 kV cm−1,
flipped-config: ∼ 2.4 kV cm−1)
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Summary so far: – 1/2

Footnote:
I Discharge probabilities in Ar-CO2 (90-10) at 38.5mm drift length differs not from the shorter

value
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Summary so far: – 2/2

I Lower onset of secondary discharges for the
’flipped’ setting

I The onset filed strength follows qualitatively the
first Townsend coefficient – but starts at far lower
values

I No simple dependence of the onset on ∆VGEM,
the resistors and the capacitance found

I Different behaviour of the onset while the GEM
was powered with a resistor chain, suggests a
dependence on the HV supply

– First Townsend coefficient –
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Further studies with the standard configuration

1. Question: Does the potential change of the bottom GEM side during the primary
discharge trigger the secondary discharge?
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Standard HV supply vs VGEMB = GND – Settings:

Standard
I See picture
I Discharges go after attenuation with a

12 dB attenuator and a 10 kΩ resistor (or
10MΩ) to the discriminator/scope

VGEMB = GND
I Lower side of the GEM grounded
I Readout plane on HV
I Decoupling of the signal via a 4.4 nF

capacitor, further readout as the
standard readout

The following: Measurements with a standard GEM in Ar-CO2 (90-10) with an induction
gap of 2mm and a drift distance of 26.7mm.
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Secondary discharge probability
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I The standard HV
settings and the
VGEMB = GND show
the same steep onset
as seen before

I There is no difference
visible between the
two settings

I The onset is at a
higher voltage as
compared to previous
results
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Time between discharges
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I The time between

discharges for both
settings shows the
same trend

I The trend is as
expected from
previous
measurements

⇒ Comparing standard-
and GND-HV settings:
No differences visible

⇒ However differences
between standard
GEMs visible as
compared to Munich
results
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Further studies with the standard configuration

2. Question: How does the length of the induction gap influence the discharge behaviour?
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Secondary discharge probability
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I dInd = 2mm: All

previous points are
shown

I dInd = 3mm: Only
the VGEMB = GND
setting was measured

I The onset of the
secondary discharges
moves to higher fields

I This change is smaller
as the difference in the
CERN and Munich
results for
dInd = 2mm
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Time between discharges

/p [V/cm mb]IndE
5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6

s]µ
t [

1

10

/p
Ind

Time to the Secondary Discharge vs E

 = 2mmIndd
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Time to the Secondary Discharge vs E I The measured points
for dInd = 3mm move
as expected from the
secondary discharge
probability

In addition:
I Amplitude of the

secondary discharge
doubles with the
increased gap

I Trend of this
amplitude with EInd
not yet conclusive
(CERN/Munich
measurements)Discharge studies with single GEMs (P. Gasik, A. Deisting) 22



Further studies with the standard configuration

3. Question: Does a large pitch (LP) foil behave similar?
4. Question: Is there an influence of the drift gap?
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Secondary discharge probability
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Secondary Discharge Prob. vs E I As comparison:
Standard (S) GEM at
dInd = 3mm and
standard HV config.

I LP GEM: Onset of the
discharges occurs at
higher induction fields

I No difference for
different drift lengths
and HV settings

I Difference S vs LP
GEM is smaller as the
difference between
CERN and Munich S
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Time between discharges
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I Also here: The points

for different LP
measurements don’t
show different
behaviour

I The overall change for
the time between
discharges, behaves as
it did for previous
measurements: As the
onset shifts to higher
fields, the time
distribution does as
well.
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Summary of the CERN studies

GEM type S S LP LP
Primary discharge probability (O) 10−3 10−3 10−2 10−2

dInd [mm] 2 3 3 3

dDrift [mm] 27.7 26.7 26.7 13.9

VGEMB HV(GND) GND HV HV(GND)

Onset EInd
[
V cm−1 mbar−1] 5.7(5.7) 6.2 6.6 6.6(6.6)

Signal (1fst/1snd) [V] – HV-config: -0.18/-1.5 -0.18/-4.7 ?2/4.7

GND-config: -0.18/-3.4 -0.3/-1.11 -0.18/4.7

Footnotes:

1: Corresponding measurements made with different attenuation
2: Non constant behaviour of the primary voltage
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Combined Conclusions

I The onset of the secondary discharges depends on the induction field – so far no other
dependency has been found

I This includes studies of the absolute potential on the GEM, drift-field
(200-600V cm−1) and -length studies, and studies of the ∆VGEM (410V ±O(%))

I The exact position of this onset seems to change from foil to foil
I The field for the onset depends on the induction gap (Threshold value increases with

the gap)
I The time between primary and secondary discharge depends exponentially

(∼ exp(−c1 × (EInd − c2))) on the induction field, where c2 depends on the onset field
I Different gas mixtures lead to a different slope of the onset
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Backup
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Simulating long cables: Capacitances to ground

I To simulate long cables capacitors were added
I No changes observed with the standard config., but lower onset seen in case of the

flipped config.
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Observation while powering the GEM with a resistor chain

I In case of the flipped configuration nothing changed
I For the standard configuration the onset shifts to higher fields!
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Determination of the plotted parameters

Probabilities:
I Primary ("lower case 1"):

Pr1 =
(scaler counts)1

rate × time
, ∆Pr1 = Pr1 ×

√(
∆rate

rate

)2

+
1

(scaler counts)2

I Secondary ("lower case 2"):

Pr2 =
(scaler counts)2

(scaler counts)1
, ∆Pr2 = Pr2 ×

√
1

(scaler counts)1
+

1
(scaler counts)2

Times:
I Average time between discharges := Mean of the "Time between discharges

distribution" (Example on the next slide)
I Error given in plots showing the time is the standard deviation of the "Time between

discharges distribution"
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Example: "Time between discharges distribution"

Settings:
∆VGEM = 406V

EDrift = 400V cm−1

EInd = 5943V cm−1

FYI:
Time lower than 0.2 µs

∆VGEM = 419V

EDrift = 400V cm−1

EInd = 6990V cm−1

have been observed.
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Amplitude of the secondary discharge – 1/2
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I Points recorded during the

VGEMB = GND measurements
are shown

I Furthermore: Points with a
different attenuation were
rejected

I The amplitude of the secondary
discharge roughly doubles with
the increased induction gap

But: Different trend with induction
field observed in Munich

Discharge studies with single GEMs (P. Gasik, A. Deisting) 33



Amplitude of the secondary discharge – 2/2

Results in Munich:
I Except of the onset

field, the amplitudes
in the flipped/non
flipped configuration
behave similar

I Amplitudes increase
with the induction
field

I Differences between
measurements
(CERN/Munich) still
to be resolved
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Secondary discharge probability for different GEM voltages
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I As observed in Munich: No
dependence of the discharge
probability (time between
discharges) of the GEM voltage
observed
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Secondary discharge probability for different drift fields
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I Studied with the standard GEM
and and the 2mm gap

I No dependence observed
I The same is true for e.g. the

time between discharges
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Primary discharge probability of all measurements
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I Clearly a higher primary
discharge probability with the
LP

I A high amount of outliers →
not explained yet

I Outliers only visible in this plot
– no influence on other
measurements found
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